Summary Background 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov , NCT03471494 . Findings Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding National Institute for Health Research Global Health Research Unit.
<p>In this work, we propose to transfer a soil moisture-based wireless sensor network (SM-WSN) to support the reduction of irrigation water consume in the Tuscany region (Italy). The SM-WSN was designed and validated in a commercial pear orchard during two growing seasons (2019-2020) in which the smart irrigation strategy was implemented and applied.</p><p>Initially, the micro irrigation system was assessed based on its performance in terms of water distribution uniformity (DU) evaluated with field measurements of emitter flow rates. Then, a zoning analysis was carried out to divide the orchard into homogeneous areas according to the normalized difference vegetation index (NDVI) detected with unmanned aerial vehicle (UAV) and GIS tools. These areas were used to define the topology of the SM-WSN and to investigate how water distribution uniformity can affect the vigour of the trees. A total of 6 &#8220;drill & drop&#8221; capacitance probes (Sentek Pty Ltd, Stepney, Australia) were installed in the field, after following a simplified laboratory calibration procedure. The hardware and the smartphone-based application, AgriNET, used to download from remote the sensors&#8217; readings were provided by Tuctronics (Walla Walla, Washington, USA).</p><p>Assuming that the zoning outcome was only associated with the soil spatial variability, the effect of DU on the vigour of the trees has been identified. Moreover, unlike the ordinary irrigation scheduling applied in the farm, the smart system allowed maintaining the soil water content within a pre-defined optimal range, in which the upper and lower limits corresponded respectively to the soil field capacity and the threshold below which water stress occurs. Based on the smart irrigation management, a water-saving up to 50% of the total water supplied with ordinary scheduling was achieved during both the investigated growing seasons. Moreover, the quality of the productions (i.e &#176;Brix, fruit size and firmness) were in line with the standard required by the farmer. The adoption of the new technology, aiming at identifying the most appropriate irrigation management, has the potential to generate positive economic returns and to reduce the environmental impacts.</p>
Climate change and intensive agriculture are responsible for the increasing frequency and intensity of abiotic stresses generating conditions of water scarcity. Currently, there is the need to select and release, in a short time, plants adaptable to the current and future environmental conditions and resistant to biotic and/or abiotic stress. This study presents the design and validation of a High-Throughput Screening (HTS) system for the continuous and simultaneous monitoring of the plant stress response to drought in a semi-controlled environment.Structurally, the HTS-system is formed by three hardware segments to detect with high-frequency the agrometeorological variables (i.e., atmometry), the weights (i.e., gravimetry), and the soil water content (SWC) (i.e., time domain reflectometry, TDR) of sixteen pots in which the medicinal crop Salvia officinalis L (sage) was grown. Two irrigation treatments, one based on full irrigation and the second on soil water deficit conditions, were applied following a feedback control irrigation scheduling protocol, and an automated micro-irrigation system was designed to manage them.The system was able to model the sage water stress function following the root water uptake (RWU) macroscopic approach. The threshold of soil water status below which crop water stress occurred was also identified. The gravimetric-based daily evapotranspiration (ET c act ) and the time domain reflectometry (TDR) -based RWU rates showed a high correlation, which allowed validating the RWU indicators based on soil moisture sensors to estimate the ET c act fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.