We discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI) and user modeling. We introduce the overall paradigm for our multimodal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature) and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement). We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and potential applications of emotion recognition for multimodal intelligent systems
The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5,130), was analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1,103 associated Single-Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aamterms-v1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.