The tagging aims to address a challenge to search relevant text-documents given a set of tags. In addition, the tag-based approaches received a wide attention as a possible solution to the big-content. Probabilistic topic model methods, such as Dirichlet distribution and non-negative matrix factorization are used for tagging process. Both have many challenges. The iterations in addition the semantic coherence are considered as challenges in semantic tagging applications. In light of this, we propose a novel learning tagging model called semantic non-negative matrix factorization, which introduces the utilization of the semantic text representation via knowledge-based approach to extract the term-topic matrix and the topic-document matrix by semantically approach. The proposed words are based on a novel initialization method for non-negative matrix factorization technique. In the experimental evaluations, we use five datasets demonstrate the effectiveness of our model. The results are compared with the state-of-the-art model. The results show the proposed model has an ability to generate more precise topics with semantically related and having the high sense to the disambiguation of meaning, provides up to more dimensionality reduction and the topic coherence based semantic.
Many document retrieval methods focusing on unstructured text to deliver more meaningful information on the user. Tag-based document retrieval aims to address a challenge to searching relevant text-documents given a set of tags. Tag-based approaches received a wide attention as a possible solution to the big-content related IR, showing a high performance through a combination of its effectiveness and efficiency. This paper use word sense disambiguation with non-negative matrix factorization to generate topic model based semantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.