CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested. Mol Cancer Ther; 12(6); 968-78. Ó2013 AACR.
The synthesis and characterization of a new pyridinofullerene ligand capable of forming axially symmetric complexes with ZnTPP is reported; molecular modelling studies, 1H NMR, UV-Vis spectroscopy and fluorescence quenching data support formation of a strong complex between the new ligand and ZnTPP.
The subject of this paper is a new fullerene building block design with the potential for defined geometry and good electronic communication. The synthesis and characterization of a new pyridinofullerene ligand capable of forming axially symmetric complexes with metalloporphyrins is reported. X-ray structural and molecular modeling studies, (1)H NMR, UV-vis spectroscopy, electrochemistry studies, and fluorescence quenching data support the formation of a strong complex between the new ligand and the metal center of ZnTPP. On the basis of computational studies, the highest occupied molecular orbital (HOMO) of this ligand is significantly different from a model compound with insulating carbons between the pyridine and the fullerene. The N-pyridinium fulleropyrrolidine salts of the new ligand and model compound were also prepared and their spectral and electrochemical properties are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.