Deaf people all around the world face difficulty to communicate with the others. Hence, they use their own language to communicate with each other. On the other hand, it is difficult for deaf people to get used to technological services such as websites, television, mobile applications, and so on. This project aims to design a prototype system for deaf people to help them to communicate with other people and computers without relying on human interpreters. The proposed system is for letter-based Kurdish Sign Language (KuSL) which has not been introduced before. The system would be a real-time system that takes actions immediately after detecting hand gestures. Three algorithms for detecting KuSL have been implemented and tested, two of them are well-known methods that have been implemented and tested by other researchers, and the third one has been introduced in this paper for the 1st time. The new algorithm is named Gridbased gesture descriptor. It turned out to be the best method for the recognition of Kurdish hand signs. Furthermore, the result of the algorithm was 67% accuracy of detecting hand gestures. Finally, the other well-known algorithms are named scale invariant feature transform and speeded-up robust features, and they responded with 42% of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.