The antioxidant activity of four derivatives of benzoic acid was systematically compared with the activity of the four homologous derivatives of cinnamic acid. The couples of compounds differed for the kind of aromatic substitution (p-hydroxy, p-hydroxymethoxy, p-hydroxydimethoxy, dihydroxy). The antioxidant activity was measured using (i) a competition kinetic test, to measure the relative capacity to quench peroxyl radical and (ii) the in vitro oxidative modification of human low-density lipoprotein (LDL), initiated by 2,2'-azobis(amidinopropane) dihydrochloride or catalyzed by Cu(II). In both models, cinnamic acids were more efficient than their benzoic counterparts. As for the influence of the aromatic substitution, in the kinetic test the antioxidant activity increased in the sequence p-hydroxy < p-hydroxymethoxy < dihydroxy < p-hydroxydimethoxy. In contrast, in the LDL system, the dihydroxy acids had an antioxidant capacity equal to or higher than that of the p-hydroxydimethoxy acids.
Despite extensive literature describing the biological effects of polyphenols, little is known about their absorption from diet, one major unresolved point consisting of the absorption of the bound forms of polyphenols. In this view, in the present work we studied the absorption in humans of phenolic acids from coffee, a common beverage particularly rich in bound phenolic acids, such as caffeic acid, ferulic acid, and p-coumaric acid. Coffee brew was analyzed for free and total (free + bound) phenolic acids. Chlorogenic acid (5'-caffeoylquinic acid), a bound form of caffeic acid, was present in coffee at high levels, while free phenolic acids were undetectable. After alkaline hydrolysis, which released bound phenolic acids, ferulic acid, p-coumaric acid, and high levels of caffeic acid were detected. Plasma samples were collected before and 1 and 2 h after coffee administration and analyzed for free and total phenolic acid content. Two different procedures were applied to release bound phenolic acids in plasma: beta-glucuronidase treatment and alkaline hydrolysis. Coffee administration resulted in increased total plasma caffeic acid concentration, with an absorption peak at 1 h. Caffeic acid was the only phenolic acid found in plasma samples after coffee administration, while chlorogenic acid was undetectable. Most of caffeic acid was present in plasma in bound form, mainly in the glucuronate/sulfate forms. Due to the absence of free caffeic acid in coffee, plasma caffeic acid is likely to be derived from hydrolysis of chlorogenic acid in the gastrointestinal tract.
Coffee and tea are widely consumed beverages, but only tea has been studied for its antioxidant capacity (AC) in vivo. The aim of this study was to compare the capacities of coffee and tea to affect plasma redox homeostasis in humans. The AC of plasma before and after supplementation with 200 mL of beverages (0, 1, and 2 h) was measured by the TRAP and crocin tests. The crocin test detected an increase in plasma AC only in subjects supplemented with coffee (+7% at peak time), whereas the TRAP method showed an increase in plasma AC after consumption of both coffee and tea (+6 and +4%, respectively, at peak time). Both beverages induced a significant increase in plasma uric acid (+5 and +7%, respectively). Uric acid strongly affects the results obtained by the TRAP test and does not affect those obtained by the crocin test. We can thus argue that uric acid is the main component responsible for the plasma AC increase after tea drinking, whereas molecules other than uric acid (probably phenolic compounds) are likely to be responsible for the increase in plasma AC after coffee drinking.
Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.