This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights
The mass of ice on wind turbines blades is one of the main problems that energy companies have in cold climates. This paper presents a novel approach to detect and classify ice thickness based on pattern recognition through guided ultrasonic waves and Machine Learning. To successfully achieve a supervised classification, it is necessary to employ a method that allows the correct extraction and selection of features of the ultrasonic signal. The main novelty in this work is that the approach considers four feature extraction methods to validate the results, grouped by linear (AutoRegressive (AR) and Principal Component Analysis) and nonlinear (nonlinear-AR eXogenous and Hierarchical Non-Linear Principal Component Analysis), and feature selection is done by Neighbourhood Component Analysis. A supervised classification was performed through Machine Learning with twenty classifiers such as Decision tree, Discriminant Analysis, Support Vector Machines, K-Nearest Neighbours, and Ensemble Classifiers. Finally, an evaluation of the classifiers was done in single frequency and multi-frequency modes, obtaining accurate results.
Delamination in Wind Turbine Blades (WTB) is a common structural problem that can generate large costs. Delamination is the separation of layers of a composite material, which produces points of stress concentration. These points suffer greater traction and compression forces in working conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of delamination is crucial for the prevention of breakages and downtime. The main novelty presented in this paper has been to apply an approach for detecting and diagnosing the delamination WTB. The approach is based on signal processing of guided waves, and multiclass pattern recognition using machine learning. Delamination was induced in the WTB to check the accuracy of the approach. The signal is denoised by wavelet transform. The autoregressive Yule-Walker model is employed for feature extraction, and Akaike's information criterion method for feature selection. The classifiers are quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver operating characteristic analysis by: recall, specificity, precision, and F-score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.