Because the COVID-19 epidemic has limited human activities, it has touched almost every sector. Education is one of the most affected areas. To prevent physical touch between students, schools and campuses must adapt their complete learning system to an online environment. The difficulty with this technique arises when the teachers or lecturers administer exams. It is difficult to oversee pupils one by one online. This research proposes the development of a computer program to aid in this effort. By applying deep learning models, this program can detect a person’s activities during an online exam based on a web camera. The reliability of this system is 84.52% based on the parameter F1-score. This study built an Indonesian-language web-based application. Teachers and lecturers in Indonesia can use this tool to evaluate whether students are cheating on online exams. Unquestionably, this application is a tool that may be utilized to develop distance learning educational technology in Indonesia.
Manusia tidak bisa terlepas dari aktivitas sehari-hari yang mana merupakan bagian dari kehidupan manusia. Human activity recognition atau pengenalan aktivitas manusia saat ini merupakan salah satu topik yang sedang banyak diteliti seiring dengan pesatnya kemajuan di bidang teknologi yang berkembang saat ini. Hampir semua bidang terdampak dari pandemi COVID-19 yang memengaruhi aktivitas manusia sehingga menjadi lebih terbatas. Salah satu bidang yang paling terdampak yaitu pendidikan, di mana kampus menerapkan sistem pembelajaran daring, yang membuat dosen lebih sulit untuk mengawasi pembelajaran maupun ujian yang dilakukan secara daring karena tidak dapat mengawasi aktivitas yang dilakukan mahasiswa secara langsung. Penelitian ini bertujuan untuk membuat model yang dapat mengenali aktivitas seseorang saat ujian daring berdasarkan tangkapan webcam dengan memanfaatkan model deep learning dengan metode Convolution Neural Network (CNN) menggunakan arsitektur MobileNetV2. Pengujian hyperparameter dilakukan untuk menghasilkan model optimal yang dilakukan pada batch size sebesar 16, 32, dan 64 serta dense layer sebanyak 1, 3, 5, dan 7. Pengujian tersebut menghasilkan model optimal dengan hyperparameter berupa max epoch sebanyak 20, early stopping dengan patience sebesar 10, learning rate sebesar 0,0001, batch size sebesar 16, dan dense layer sebanyak 5. Model tersebut dievaluasi menggunakan cross validation dan confusion matrix yang berhasil memberikan performa F1-score akhir sebesar 84,52%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.