Abstract. Nowadays, the Internet is one of the most important things in a human's life. The unlimited access to information has the potential for people to gather any data related to their needs. However, this sophisticated technology also bears a bad side, for instance negative content information. Negative content can come in the form of images that contain pornography. This paper presents the development of a skin classification scheme as part of a negative content filtering system. The data are trained by grey-level co-occurrence matrices (GLCM) texture features and then used to classify skin color by support vector machine (SVM). The tests on skin classification in the skin and non-skin categories achieved an accuracy of 100% and 97.03%, respectively. These results indicate that the proposed scheme has potential to be implemented as part of a negative content filtering system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.