This study aims to apply the convolutional neural network (CNN) to classify batik based on its manufacturing method, namely Batik Tulis which are hand drawn, Batik Cap where stamps are used to create the pattern, and Batik Printing which are printed using textile printing machine. We collected 40 images for each type of batik with a total of 120 images. To speed up and simplify the model building process, we implemented transfer learning with 3 basic CNN model architectures, namely ResNet, DenseNet, and VGG with batch normalization. We also experimented with building a new dataset by breaking each image down into 30 smaller images. Image augmentation was also used to prevent overfitting as well as to provide variations in the training data. The experimental results with 5-fold cross validation show that densenet169 gives the best results on the original dataset with an accuracy of 79.17% while vgg13_bn shows the best performance on the modified dataset with an accuracy of 87.61%. All models showed an increase in performance when using the modified dataset, except densenet169 which did not show a significant difference in performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.