that if there is no control (variables/interventios), 900 out 1000 susceptible individuals may be infected (exposed) in very short period. As such a circumstances no agency fighting against COVID-19 could be successful due to its limited resources.
COVID-19 is a pandemic respiratory illness. The disease spreads from human to human and is caused by a novel coronavirus SARS-CoV-2. In this study, we formulate a mathematical model of COVID-19 and discuss the disease free state and endemic equilibrium of the model. Based on the sensitivity indexes of the parameters, control strategies are designed. The strategies reduce the densities of the infected classes but don’t satisfy the criteria/threshold condition of the global stability of disease free equilibrium. On the other hand, the endemic equilibrium of the disease is globally asymptotically stable. Therefore it is concluded that the disease cannot be eradicated with present resources and the human population needs to learn how to live with corona. For validation of the results, numerical simulations are obtained using fourth order Runge–Kutta method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.