Markov chain theory isan important tool in applied probability that is quite useful in modeling real-world computing applications.For a long time, rresearchers have used Markov chains for data modeling in a wide range of applications that belong to different fields such as computational linguists, image processing, communications,bioinformatics, finance systems, etc. This paper explores the Markov chain theory and its extension hidden Markov models (HMM) in natural language processing (NLP) applications. This paper also presents some aspects related to Markov chains and HMM such as creating transition matrices, calculating data sequence probabilities, and extracting the hidden states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.