Trichoderma species are known as excellent biocontrol agents against soil-borne pathogens that cause considerable crop losses. Eight strains of Trichoderma were isolated from five Egyptian regions. They identified based on translation elongation factor-1α (TEF1) sequencing as four different Trichoderma species: Trichoderma asperellum, Trichoderma harzianum, Trichoderma viride, and Trichoderma longibrachiatum. Optimal growth conditions (temperature and media), and the phosphate solubilization capability of Trichoderma strains were evaluated in vitro. Further, the ability of these strains to antagonize Fusarium solani, Macrophomina phaseolina, and Fusarium graminearum was also evaluated. The results revealed that Trichoderma harzianum (Th6) exhibited the highest antagonistic ability against F. solani, M. phaseolina and F. graminearum with inhibition rates of 71.42%, 72.97%, and 84.61%, respectively. Trichoderma viride (Tv8) exhibited the lowest antagonism against the same pathogens with inhibition rates of 50%, 64% and 69.23%, respectively. Simple-sequence repeats (SSRs) and random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic variability of the Trichoderma strains. The results revealed that of 45 RAPD amplified bands, 36 bands (80%) were polymorphic and of SSRs amplified 36 bands, 31 bands (86.11%) were polymorphic. The amplification of calmodulin and β-1,3-endoglucanase was noted at 500 bp and 230 bp, respectively. Data indicated that T. viride (Tv8) had the highest phosphate solubilization index (10.0 mm), while T. harzianum (Th6) had the lowest phosphate solubilization index (4.0 mm). In conclusion, T. harzianum (Th6) had the highest antagonistic activity in dual culture assay along with the growth rate; while T. viride (Tv8) had the highest phosphate solubilization activity. There are still gaps in obtaining new formulations, selecting potent Trichoderma strains to confirm disease control in planta. For improving Trichoderma recommendation in the organic agricultural system and sustaining the fertility of the soil, the field application of highly antagonistic biocontrol agents in different types of soil and plant species will be the first approach toward bio-pesticide treatments along with bio-fertilizer inoculation. Furthermore, secondary metabolites will be investigated for the most promising strains with the combination of different pathogens and application timing.
ZnO-based nanomaterials have high antifungal effects, such as inhibition of growth and reproduction of some pathogenic fungi, such as Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. Therefore, we report the extracellular synthesis of ZnONPs using a potential fungal antagonist (Trichoderma harzianum). ZnONPs were then characterized for their size, shape, charge and composition by visual analysis, UV–visible spectrometry, X-ray diffraction (XRD), Zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). The TEM test confirmed that the size of the produced ZnONPs was 8–23 nm. The green synthesized ZnONPs were characterized by Fourier transform infrared spectroscopy (FTIR) studies to reveal the functional group attributed to the formation of ZnONPs. For the first time, trichogenic ZnONPs were shown to have fungicidal action against three soil–cotton pathogenic fungi in the laboratory and greenhouse. An antifungal examination was used to evaluate the bioactivity of the mycogenic ZnONPs in addition to two chemical fungicides (Moncut and Maxim XL) against three soil-borne pathogens, including Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. The findings of this study show a novel fungicidal activity in in vitro assay for complete inhibition of fungal growth of tested plant pathogenic fungi, as well as a considerable reduction in cotton seedling disease symptoms under greenhouse conditions. The formulation of a trichogenic ZnONPs form was found to increase its antifungal effect significantly. Finally, the utilization of biocontrol agents, such as T. harzianum, could be a safe strategy for the synthesis of a medium-scale of ZnONPs and employ it for fungal disease control in cotton.
Escherichia coli is the dominant bacterial cause of UTI among the uropathogens in both developed and developing countries. This study is to investigate the effect of Acacia nilotica aqueous extract on the survival and biofilm of isolated pathogens to reduce UTIs diseases. A total of 170 urine samples were collected from Luxor general hospital and private medical analysis laboratories in Luxor providence, Egypt. Samples were screened for the incidence of uropathogens by biochemical tests, antibiotics susceptibility, detection of virulence, and antibiotic-resistant genes by multiplex PCR, biofilm formation, and time-killing assay. Escherichia coli is by far the most prevalent causative agent with the percentage of 73.7% followed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeuroginosa, and Acinetobacter baumanii. Isolates were multidrug-resistant containing blaTEM, blaSHV, blaCTX, qnrs, and aac(3)-Ia resistant genes. All isolates were sensitive to 15–16.7 mg ml−1 of Acacia nilotica aqueous extract. Time killing assay confirmed the bactericidal effect of the extract over time (20–24 h). A high percentage of 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl (23.5%); á-Selinene (15.12%); Oleic Acid (14.52%); Globulol (11.35%) were detected among 19 bioactive phytochemical compounds in the aqueous extract of A. nilotica over the GC-mass spectra analysis. The plant extract reduced significantly the biofilm activity of E. coli, K. pneumoniae, P. mirabilis, and P. aeuroginosa by 62.6, 59. 03, 48.9 and 39.2%, respectively. The challenge to improve the production of A. nilotica phytochemicals is considered a very low price for the return.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.