This paper presents 2-way Power Divider (PD) for Ultra-Wideband (UWB) applications. The proposed power divider is realized using two cascaded sections of Wilkinson Power Divider (WPD) of equal characteristic impedances and unequal electrical lengths with inserted open stub to improve matching, isolation and to broaden the bandwidth. It is proved analytically using the "Even Odd Mode" analysis method and the ABCD matrix to obtain exact closed-form design equations. A detailed design methodology is introduced to facilitate the implementation without needing CAD optimization. To verify the proposed design methodology, a 2-way power divider is designed, fabricated on a Rogers RT/Duroid 5880 substrate and compared to other published 2-way microstrip power dividers. Measured data show good agreement with Electromagnetic (EM)-Circuit Co-Simulation, which proves the design equations and methodology. The proposed planar 2-way PD achieves an isolation ≥ 13.5 dB, input return loss ≥ 10 dB, output return loss ≥ 14.5 dB and exceeded insertion loss ≤ 0.9 dB (over the −3 dB splitting ratio) through the whole UWB range from 3.1 GHz to 10.6 GHz. Furthermore, it has a compact area of 22 mm × 15 mm, which provides 50% enhancement over similar microstrip PD circuits while achieving better isolation and matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.