Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery) and latency requirements (from backend bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google products. In this article, we describe the simple data model provided by Bigtable, which gives clients dynamic control over data layout and format, and we describe the design and implementation of Bigtable.
This paper describes the Network-Attached Secure Disk (NASD) storage architecture, prototype implementations oj NASD drives, array management for our architecture, and three,filesystems built on our prototype. NASD provides scalable storage bandwidth without the cost of servers used primarily ,fijr trut&rring data from peripheral networks (e.g. SCSI) to client networks (e.g. ethernet). Increasing datuset sizes, new attachment technologies, the convergence of peripheral and interprocessor switched networks, and the increased availability of on-drive transistors motivate and enable this new architecture. NASD is based on four main principles: direct transfer to clients, secure interfaces via cryptographic support, asynchronous non-critical-path oversight, and variably-sized data objects. Measurements of our prototype system show that these services can be cost#ectively integrated into a next generation disk drive ASK. End-to-end measurements of our prototype drive andfilesysterns suggest that NASD cun support conventional distributed filesystems without per$ormance degradation. More importantly, we show scaluble bandwidth for NASD-specialized filesystems. Using a parallel data mining application, NASD drives deliver u linear scaling of 6.2 MB/s per clientdrive pair, tested with up to eight pairs in our lab.
By providing direct data transfer between storage and client, network-attached storage devices have the potential to improve scalability for existing distributed file systems (by removing the server as a bottleneck) and bandwidth for new parallel and distributed file systems (through network striping and more efficient data paths). Together, these advantages influence a large enough fraction of the storage market to make commodity network-attached storage feasible. Realizing the technology's full potential requires careful consideration across a wide range of file system, networking and security issues. This paper contrasts two network-attached storage architectures-(l)Networked SCSI disks (NetSCSI) are networkattached storage devices with minimal changes from the familiar SCSI interface, while (2) Network-Attached Secure Disks (NASD) are drives that support independent client access to drive object services. To estimate the potential performance benefits of these architectures, we develop an analytic model and perform tracedriven replay experiments based on AFS and NFS traces. Our results suggest that NetSCSI can reduce tile server load during a burst of NFS or AFS activity by about 30%. With the NASD architecture, server load (during burst activity) can be reduced by a factor of up to five for AFS and up to ten for NFS.
No abstract
By providing direct data transfer between storage and client, network-attached storage devices have the potential to improve scalability for existing distributed file systems (by removing the server as a bottleneck) and bandwidth for new parallel and distributed file systems (through network striping and more efficient data paths). Together, these advantages influence a large enough fraction of the storage market to make commodity network-attached storage feasible. Realizing the technology's full potential requires careful consideration across a wide range of file system, networking and security issues. This paper contrasts two network-attached storage architectures---(1) Networked SCSI disks (NetSCSI) are network-attached storage devices with minimal changes from the familiar SCSI interface, while (2) Network-Attached Secure Disks (NASD) are drives that support independent client access to drive object services. To estimate the potential performance benefits of these architectures, we develop an analytic model and perform trace-driven replay experiments based on AFS and NFS traces. Our results suggest that NetSCSI can reduce file server load during a burst of NFS or AFS activity by about 30%. With the NASD architecture, server load (during burst activity) can be reduced by a factor of up to five for AFS and up to ten for NFS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.