The development of state estimators for local electrical energy supply systems is inevitable as the role of the system’s become more important, especially with the recent increased interest in direct current (DC) microgrids. Proper control and monitoring requires a state estimator that can adapt to the new technologies for DC microgrids. This paper mainly deals with the DC microgrid state estimation (SE) using a modified long short-term memory (LSTM) network, which until recently has been applied only in forecasting studies. The modified LSTM network for the proposed state estimator adopted a specifically weighted least square (WLS)-based loss function for training. To demonstrate the performance of the proposed state estimator, a comparison study was done with other SE methods included in this paper. The results showed that the proposed state estimator had high accuracy in estimating the states of DC microgrids. Other than the enhanced accuracy, the deep-learning-based state estimator also provided faster computation speeds than the conventional state estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.