Melittin, the most potent pharmacological ingredient of honey bee venom, induces haemolysis, lymphocyte lysis, long-term pain, localised inflammation, and hyperalgesia. In this study, efforts were made to subdue the melittin’s ill effects using a chaperone peptide called ‘mini-αA-crystallin’ (MAC) derived from eye lens αA-crystallin. Haemolytic test on human red blood cells, percentage viability, and DNA diffusion assay on Human peripheral blood lymphocytes (HPBLs) were performed with melittin in the presence or absence of MAC. Propidium iodide and Annexin V-FITC dual staining were performed to analyse quantitative levels of necrotic and apoptotic induction by melittin in the presence or absence of MAC on HPBLs using a flow cytometer. A computational study to find out the interactions between MAC and melittin was undertaken by modelling the structure of MAC using a PEP-FOLD server. The result showed that MAC inhibited melittin-induced lysis in nucleated (lymphocytes) and enucleated (RBC) cells. Flow cytometric analysis revealed a substantial increase in the necrotic and late apoptotic cells after treating HPBLs with melittin (4 µg/ml) for 24 h. Treatment with MAC at a 2:1 molar ratio prevented HPBLs from developing melittin-induced necrosis and late apoptosis. In the docking study, hydrogen, van der Waals, π-π stacking, and salt bridges were observed between the MAC and melittin complex, confirming a strong interaction between them. The MAC-melittin complex was stable during molecular dynamics simulation. These findings may be beneficial in developing a medication for treating severe cases of honeybee stings.
The life cycle of Herpes simplex virus starts with attachment to the host cell, injection of nucleocapsid into the cytoplasm, replication, transcription and viral protein production, and finally the assembly of the mature virion nucleopcapsid. The assembled nucleocapsid exits the host nucleus and gains a tegument layer bound within a bilayer of membrane phospholipid. The packaged virion particle then exits the host cell. The interaction of the (Deoxyribonucleic acid) DNA packaging complex- terminase, present on the mature viral nucleocapsid, with other proteins involved in nuclear egress and cytoplasmic tegumentation has led to the proposal of the model by which the terminase complex may be involved in these two events. The role of terminase complex in Herpes Simplex Virus (HSV) genomic DNA encapsidation into the capsid is previously established, but the role of the terminase subunits post DNA packaging remains unclear. The current review provides a model by which the terminase complex may have a role to play in the events of nuclear egress and secondary envelopment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.