This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain Takagi-Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer (SMO) with two discontinuous terms to solve the problem of simultaneous faults. Sufficient stability conditions in terms linear matrix inequalities are achieved to guarantee the stability of the state estimation error. The observer gains are obtained by solving a convex multiobjective optimization problem. Simulation examples are given to illustrate the performance of the proposed observer.
This paper presents a new recursive filter to joint fault and state estimation of a linear time-varying discrete systems in the presence of unknown disturbances. The method is based on the assumption that no prior knowledge about the dynamical evolution of the fault and the disturbance is available. As the fault affects both the state and the output, but the disturbance affects only the state system. Initially, we study the particular case when the direct feedthrough matrix of the fault has full rank. In the second case, we propose an extension of the previous case by considering the direct feedthrough matrix of the fault with an arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance (UMV) criteria. A numerical example is given in order to illustrate the proposed method.
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.