BackgroundAfter Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth.ObjectivesA small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup.MethodsThree houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF).ResultsAt baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m3, spore counts ranged from 82,000 to 630,000 spores/m3, and endotoxin ranged from 17 to 139 endotoxin units/m3. Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators.ConclusionsDuring baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters.
Smaller-sized fungal fragments (<1 μm) may contribute to mold-related health effects. Previous laboratory-based studies have shown that the number concentration of fungal fragments can be up to 500 times higher than that of fungal spores, but this has not yet been confirmed in a field study due to lack of suitable methodology. We have recently developed a field-compatible method for the sampling and analysis of airborne fungal fragments. The new methodology was utilized for characterizing fungal fragment exposures in mold-contaminated homes selected in New Orleans, Louisiana and Southern Ohio. Airborne fungal particles were separated into three distinct size fractions: (i) >2.25 μm (spores); (ii) 1.05-2.25 μm (mixture); and (iii) < 1.0 μm (submicrometersized fragments). Samples were collected in five homes in summer and winter and analyzed for (1→3)-β-D-glucan. The total (1→3)-β-D-glucan varied from 0.2 to 16.0 ng m −3 . The ratio of (1→3)-β-D-glucan mass in fragment size fraction to that in spore size fraction (F/S) varied from 0.011 to 2.163. The mass ratio was higher in winter (average = 1.017) than in summer (0.227) coinciding with a lower relative humidity in the winter. Assuming a mass-based F/S-ratio=1 and the spore size = 3 μm, the corresponding number-based F/S-ratio (fragment number/spore number) would be 10 3 and 10 6 , for the fragment sizes of 0.3 and 0.03 μm, respectively. These results indicate that the actual (field) contribution of fungal fragments to the overall exposure may be very high, even much greater than that estimated in our earlier laboratory-based studies.
This study highlights major health and environmental specificities of marginalized populations living in Aleppo, where women seem to bear a disproportionate burden of poor health and disability. Smoking and exposure to tobacco smoke seem among the major exposures facing these populations.
Objectives. To review how disasters introduce unique challenges to conducting population-based research and community-based participatory research (CBPR).Methods. One example of the use of CBPR within a disaster setting is provided by our experience in conducting a study in the aftermath of Hurricane Katrina, which put 80% of the city of New Orleans, Louisiana, under water. 6 In some areas of the city, homes, schools, and streets were flooded for at least 4 to 6 weeks, resulting in widespread mold infestation and fear of a number of illnesses, including childhood asthma. HEAL demonstrated that an evidencebased environmental asthma counselor intervention can be implemented in a postdisaster setting to improve asthma management and assess environmental exposures. We used a novel combination of the efficacious National Cooperative Inner-City Asthma Consortium (NCICAS) asthma counselor intervention 10 and the Inner-City Asthma Study (ICAS) environmental intervention 11 to intervene on 182 ABOUT THE AUTHORS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.