ABSTRACT:The dietary polyphenol resveratrol has been shown to have chemopreventive activity against cardiovascular disease and a variety of cancers in model systems, but it is not clear whether the drug reaches the proposed sites of action in vivo after oral ingestion, especially in humans. In this study, we examined the absorption, bioavailability, and metabolism of 14 C-resveratrol after oral and i.v.doses in six human volunteers. The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 ؎ 90 ng/ml (about 2 M) and a plasma half-life of 9.2 ؎ 0.6 h. However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma.Most of the oral dose was recovered in urine, and liquid chromatography/mass spectrometry analysis identified three metabolic pathways, i.e., sulfate and glucuronic acid conjugation of the phenolic groups and, interestingly, hydrogenation of the aliphatic double bond, the latter likely produced by the intestinal microflora. Extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting step in resveratrol's bioavailability. Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancerpreventive and other effects.
ABSTRACT:In a previous study, we used human liver microsomes for the first time to study cytochrome P450 (P450)-mediated oxidation of the flavonoid galangin. The combination of CYP1A2 and CYP2C9 produced a V max /K m value of 13.6 ؎ 1.1 l/min/mg of protein. In the present extended study, we determined glucuronidation rates for galangin with the same microsomes. Two major and one minor glucuronide were identified by liquid chromatography/mass spectrometry. The V max /K m values for the two major glucuronides conjugated in the 7-and 3-positions were 155 ؎ 30 and 427 ؎ 26 l/min/mg of protein, thus, exceeding that of oxidation by 11 and 31 times, respectively. This highly efficient glucuronidation appeared to be catalyzed mainly by the UDP-glucuronosyltransferase (UGT)1A9 isoform but also by UGT1A1 and UGT2B15. Sulfation of galangin by the human liver cytosol, mediated mainly but not exclusively by sulfotransferase (SULT) 1A1, also appeared to be efficient. These conclusions were strongly supported by experiments using the S9 fraction of the human liver, in which all three metabolic pathways could be directly compared. When galangin metabolism was examined in fresh plated hepatocytes from six donors, glucuronidation clearly predominated followed by sulfation. Oxidation occurred only to a minor extent in two of the donors. This study for the first time establishes that glucuronidation and sulfation of galangin, and maybe other flavonoids, are more efficient than P450-mediated oxidation, clearly being the metabolic pathways of choice in intact cells and therefore likely also in vivo.
The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. Screening of our kinase-preferred collection identified aminoquinazoline 1 as a potent, nonselective inhibitor of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminoquinazolines possessing in vitro mechanism-based potency. Optimized, orally bioavailable compounds 32 and 47 exhibit anti-inflammatory activity (ED(50) of 22 and 11 mg/kg, respectively) in the anti-CD3-induced production of interleukin-2 (IL-2) in mice.
Investigations into the structure-activity relationships (SAR) of a series of phthalazine-based inhibitors of p38 are described. These efforts originated from quinazoline 1 and through rational design led to the development of a series of orally bioavailable, potent, and selective inhibitors. Kinase selectivity was achieved by exploiting a collection of interactions with p38alpha including close contact to Ala157, occupation of the hydrophobic gatekeeper pocket, and a residue flip with Gly110. Substitutions on the phthalazine influenced the pharmacokinetic properties, of which compound 16 displayed the most desirable profile. Oral dosing (0.03 mg/kg) of 16 in rats 1 h prior to LPS challenge gave a >50% decrease in TNFalpha production.
The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the synthesis, structure−activity relationships, and pharmacological characterization of 2-aminopyrimidine carbamates, a new class of compounds with potent and selective inhibition of Lck. The most promising compound of this series, 2,6-dimethylphenyl 2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy)phenyl)amino)-4-pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamate (43) exhibits good activity when evaluated in in vitro assays and in an in vivo model of T cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.