: The emerging new COVID 2019 pandemic, which started in 2019 in China (Wuhan) and is caused by SARS-CoV-2, raises critical concerns due to high morbidity and mortality. Given a large number of infected individuals and the fact that the number continues to rise, it's possible that the virus has multiple variants, some of which are more pathogenic than others.Besides, the virus is suspected of various evolutionary pathways since SARS-CoV-2 belongs to the RNA viruses’ family, which is characterized by a high mutation rate. Additionally, it is crucial to understand the life cycle of the virus to be able to urge antiviral studies. Genotyping studies about viruses are also important in order to understand the transmission and evolution of the virus. The genome of SARS-CoV-2 has a furin-like cleavage site in its S protein that may affect its pathogenicity. It was found that insertions and deletions in S protein have an impact on the transmission and fusion of the virus. The single nucleotide polymorphisms (SNP) genotypes are used to track the relationship of virus isolates. Sequence alignment revealed the presence of hundreds of inter-host mutations during person-to-person transmission. Furthermore, genetic recombination provided a second mechanism for virus evolution. In this review, we highlight the life cycle of the virus and methods of virus evolution caused by mutations or recombination of viral genomes.
The COVID-19 pandemic first appeared in Wuhan, China, in December 2019 in a cluster of pneumonia patients. The causative agent was found to be SARS-CoV-2. Here, we are summarizing current treatment strategies and highlighting the role of bioinformatics, molecular modeling, and structural biology during the COVID-19 pandemic. There are different pharmacological treatments, mostly repurposed drugs, employed for the treatment of COVID-19, including antiviral drugs, corticosteroids, biologic drugs, antibiotics, antifungal agents, and anticoagulants. Some immune-based therapies are also under evaluation, including convalescent plasma, IL-1, IL-6 inhibitors, and interferons. Different bioinformatics networks are established to provide information about the structure, transcriptome, and pathogenicity of the virus. The genotyping analysis for SARS-CoV-2 is also useful in identifying different mutations, SNPs, and conservative domains along the viral genome. Cryo-EM and X-ray diffraction had a crucial role in determining the structure of viral proteins such as spike (S) protein, main protease, and RdRp. NMR had a minor role and determining the structure of nucleocapsid (N) protein only. Several docking studies were performed to predict the interaction of certain FDA-approved drugs with known efficacy and toxicity, while others used natural products. Among different study types, in silico drug prediction and repurposing have the lowest risk with less off-target results. Therefore, bioinformatics and in silico studies have an important role during pandemics in providing information about viral structure and function and predicting potential treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.