This paper proposes a new speed and position sensorless control method of Interior permanent magnet synchronous motors (IPMSM) using sliding mode observer based on Active Flux concept. First, a new description of IPMSM dynamic model in the stationary reference frame using active flux concept is proposed. The model obtained suits for both SPMSM and IPMSM in the stationary reference frame, Therefore, all that sensorless controls proposed for SPMSM can be directly and easily applied to IPMSM. Secondly, from the measurement of the voltages and the currents, a new analysis of the observability property is developed. Then, the sliding mode observer (SMO) structure and its design method are described in the stationary reference frame by using the active flux equation. A “chattering” phenomenon is reduced by using this technique. The stability of the proposed SMO was verified using the Lyapunov function. The speed and position of the IPMSM are estimated based on back EMF which are related to the active flux. Moreover, the zero d-axis current control strategy is used to control the IPMSM. Finally, the proposed method on the proposed model has been simulated and tested to show the effectiveness of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.