Robust predictive modeling is the process of creating, validating, and testing models to obtain better prediction outcomes. Datasets usually contain outliers whose trend deviates from the most data points. Conventionally, outliers are removed from the training dataset during preprocessing before building predictive models. Such models, however, may have poor predictive performance on the unseen testing data involving outliers. In modern machine learning, outliers are regarded as complex signals because of their significant role and are not suggested for removal from the training dataset. Models trained in modern regimes are interpolated (over trained) by increasing their complexity to treat outliers locally. However, such models become inefficient as they require more training due to the inclusion of outliers, and this also compromises the models’ accuracy. This work proposes a novel complex signal balancing technique that may be used during preprocessing to incorporate the maximum number of complex signals (outliers) in the training dataset. The proposed approach determines the optimal value for maximum possible inclusion of complex signals for training with the highest performance of the model in terms of accuracy, time, and complexity. The experimental results show that models trained after preprocessing with the proposed technique achieve higher predictive accuracy with improved execution time and low complexity as compared to traditional predictive modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.