Nowadays, lightweight aggregate concrete is becoming more popular due to its versatile properties. It mainly helps to reduce the dead loads of the structure, which ultimately reduces design load requirements. The main challenge associated with lightweight aggregate concrete is finding an optimized mix per requirements. However, the conventional material design of this composite is quite costly, time-consuming, and iterative. This research proposes a simplified methodology for the mix designing of structural and non-structural lightweight aggregate concrete by incorporating machine learning. For this purpose, five distinct machine learning algorithms, support vector machine (SVM), artificial neural network (ANN), decision tree (DT), Gaussian process of regression (GPR), and extreme gradient boosting tree (XGBoost) algorithms, were investigated. For the training, testing, and validation process, a total of 420 data points were collected from 43 published journal articles. The performance of models was evaluated based on statistical performance indicators. Overall, 11 input parameters, including ingredients of the concrete mix and aggregate properties were entertained; the only output parameter was the compressive strength of lightweight concrete. The results revealed that the GPR model outperformed the remaining four machine learning models by attaining an R2 value of 0.99, RMSE of 1.34, MSE of 1.79, and MAE of 0.69. In a nutshell, these simplified modern techniques can be employed to make the design of lightweight aggregate concrete easy without extensive experimentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.