Yellow rust (YR) globally affects wheat crops. It may turn into an epidemic, resulting in significant yield losses if the environment is suited to YR spread. The provision of resistant wheat cultivars is a sustainable protection strategy against YR. The current study aimed to use a combination of classical analytical tools to identify potential wheat lines through screening under YR stress for utilization in YR-resistance breeding. A total of 14 parents, which included 9 lines and 5 testers, were formed into 45 cross combinations via line × tester mating format. The tested germplasm was grown in a triplicate randomized full-block design, under optimal and yellow rust (YR)-stress conditions. Data were recorded on different morphological, physiochemical, yield and component traits at appropriate crop stages. A pre-combining ability analysis revealed significant inter-genotype variations. A combining ability study identified non-additive gene action in the inheritance of most of the investigated traits. Four potential parents (PR128, AN179, KS17 and WD17) and two crosses (PR128 × WD17 and AN179 × KS17) retained higher combining ability values for yield traits under YR-stress. A cluster analysis based on the overall performance found divergent classes among the screened genotypes. The clustering of different genotypes was shifted under YR-stress, which suggests variable genotypic response. Through factor analysis, we assessed and confirmed genotypes performing consistently under YR-stress. The identified genotypes may be used for disease-resistance breeding in wheat. Based on their positive correlation with grain yield, we suggest the use of peduncle length and tillers per plant as phenotypic markers for wheat selection and breeding. The knowledge base generated through the current study will add to the ongoing research on sustainable wheat breeding program.
Mung bean is one of the important Kharif pulses in Pakistan and is grown mainly for its edible seeds; therefore, fertilizers management is an important factor for improving mungbean growth and yield. A field experiment was conducted during the summer of 2013 at Palato Farm of the University of Agriculture Peshawar, Amir Muhammad Khan Campus Mardan, to determine the effect of phosphorus (P) and Zinc (Zn) on the yield and yield component of mungbean. The experiment consisted of four levels of P (0, 25, 50, and 75 kg ha-1) and four levels of Zn (0, 5, 10, and 15 kg ha-1). Data associated with the number of leaves and plant height illustrated that the higher number of leaves plant-1 (8.8) by an average was observed when P was applied at the rate of 75 kg ha-1 followed by 0 kg phosphorous (P) ha-1 (8.7) and Zn (Zn) application at the rate of 10 kg ha-1produced a maximum number of leaves plant-1 (9) followed by 15 kg ha-1(8.8) where 0 kg ZN ha-1 resulted in (7.7). Similarly, Zn significantly affected plant height, while P and interaction between P and Zn levels were non-significant. The higher plant height (95.1 cm) was observed when P was applied at the rate of 75 kg ha-1, followed by 50 kg P ha-1 (93.6 cm). Higher plant height (95.8cm) was recorded when ZN was applied at the 5 kg ha-1 followed by 10 kg ha-1(95.1cm). Higher numbers of nodules (13.1) were observed with the application of 50 kg P ha-1 followed by 75 kg P ha-1 (12.3), while the lowest (10.6) nodules were observed in the control plot. P application at the rate of 25 kg ha-1 produced a higher grain yield than 75 and 50 kg ha-1 and Zn application at the rate of 5 kg ha-1 produced a higher grain yield than 10 and 15 kg ha-1. Therefore, a lower rate of P 25 kg ha-1 and Zn 5 kg ha-1 is recommended for a higher yield of mungbean in the agro-ecological condition of Mardan.
Wheat yellow rust (YR) caused by Puccinia striiformis is lethal for the leaf photosynthetic process, which substantially affects yield components and ultimately causes drastic yield reduction. The current study aimed to identify all-stage YR resistance linked QTLs in the best cross-combination. Experimental materials were phenotyped for disease severity in YR-hot spot area at Cereal Crops Research Institute, Pirsabak Pakistan in Khyber Pakhtunkhwa province in 2019 and 2020 and 2020 and 2021 Rabi seasons. The AN179 × KS17 was found to be the best cross combination, which showed high resistance to YR, whereas crosses AN179 × PK15 and PR129 × PK15 demonstrated susceptibility to YR with high disease severity. The recombinant inbred lines (RIL) F2 wheat population Annong-179/Khaista-17 demonstrated highly desirable YR resistance and yield component traits. Simple sequence repeat (SSR) markers were used to genotype the RIL population and their parents. Three novel QTLs linked to all-stage YR resistance were found on chromosomes 2BS, 3BS and 6BS, which explained 1.24, 0.54, and 0.75 phenotypic variance, respectively. Incorporation of the newly identified novel YR-resistance associated QTLs into hybridization wheat breeding program could be effective for marker-assisted selection of the improved and sustainable resistance.
Biochar fertilization improves soil fertility and carbon sequestration, implying agricultural and environmental advantages. The effect of different sized previously applied biochar and biofertilizer agents on succeeding crops remains poorly known for legume–cereal cropping cycles. This study compared different particle-sized biochar and biofertilizer strains applied to lentils for their residual impact on subsequent maize growth, nutrition, and soil fertility without further polluting the environment. Three particle sizes (<2, 2–5, 5–10 mm) of Babul tree (Acacia arabica) wood biochar was obtained through grinding and sieving and applied prior to the lentil (first) crop at a rate of 500 g m−2. The commercial Rhizobium leguminosarum products Biozote-N and Rhizogold were inoculated to lentil seeds before sowing. The effect of biochar and biofertilizer agents on the succeeding maize (second) crops was evaluated for soil and crop performance. Findings revealed that particle sizes of <2 mm biochar and Biozote-N inoculation enhanced plant height, leaf area and leaf area index, biological yield, and thousand grain weight of the subsequent maize crop. Maize grain yield was enhanced by 2.5%, tissue N uptake by 15%, nitrogen uptake efficiency by 17%, grain protein content by 15%, extractable P by 17%, and soil bulk density by 3% with a residual biochar particle size of <2 mm and Biozote-N inoculation. It was concluded that the finely grounded (<2 mm) biochar particle combined with inoculation of Biozote-N was superior to larger particle sizes for enhancing crop growth and improving soil fertility status at the residual level, benefiting the subsequent crop in a legume–cereal rotation system.
Yellow rust (YR) epidemics have affected wheat productivity worldwide. YR resistance (Yr) is eminent in wheat; however, it is continuously invaded by evolving YR pathogen Puccinia striiformis (Pst.). Understanding the Yr genes’ diversity among the available germplasm is paramount to developing YR-resistant cultivars. In this study, 14 wheat genotypes were screened for their relative resistance index (RRI) and Yr genes/QTL via linked microsatellite markers. RRI screening categorized the studied genotypes into susceptible (<5; 4.44 ± 0.75), moderate (5–7; 6.11 ± 0.64), and resistant (>7; 8.45 ± 0.25) bulks (p < 0.001). Genetic analysis using 19 polymorphic microsatellite markers revealed 256 alleles, which were divergent among the three resistance bulks. Markers Xbarc7 and Xgwm429 showed the highest allelic diversity in comparison to Xbarc181, Xwmc419, SCAR1400, and Xgwm130. Resistant bulk showed associated alleles at Yr18 gene-linked markers Xgwm295, cssfr6, and csLV34. Other RRI-associated alleles at markers Xbarc7 and Xbarc101 showed weak and moderate linkages, respectively, with the Yr5 gene; whereas, a moderate association was noted for the Yr15 gene-linked marker Xgwm11. Marker Xwe173 linked with the Yr26 gene showed associated alleles among the susceptible bulk. Cross combinations of the parental lines forming recombinant inbred lines (RILs) demonstrated net higher RRI implying favorable allelic recombination. These results support reports and field observations on novel Pst. races that triggered Yr26, Yr5, and Yr15 busts in recent past. This study further implies that pyramiding all stage resistance genes (Yr5, Yr10, Yr15, and Yr26) with adult plant resistance genes (Yr18 and Yr62) should provide sustained YR resistance. The associated alleles at Yr genes-linked markers provide a basis for marker-assisted YR resistance breeding in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.