Purpose Lean implementation is vastly incorporated in core manufacturing processes; however, its applicability in the supply chain and service industry is still in its infancy. To acquire performance excellence and thrive in the global competitive market, many firms are adopting newer methodologies. But, there is a stringent need for production simulation systems to analyze supply chains both inbound and outbound. The era of face validation is slowly disappearing. Lean tools and procedures that provide future state assumptions need advanced tools and techniques to measure, quantify, analyze and validate them. The purpose of this study is to enable dynamic quantification and visualization of the future state of a warehouse supply chain value stream map using discrete event simulation (DES) technique. Design/methodology/approach This study aimed to apply an integrated approach of the value stream mapping (VSM) and DES in a Malaysian pharmaceutical production warehouse. The main focus is diverted towards reducing the warehouse supply chain lead time by initially constructing a supply chain value stream map (both present state and future state) and integrating its data in a DES modelling and simulation software to dynamically visualize the changes in future state value stream map. Findings The DES simulation was able to mimic the future state lead time reductions successfully, which assists in better decision-making. Improvements were seen related to total lead time, process time, value and non-value-added percentage. Warehouse performance metrics such as receiving, put away and storage rates were substantially improved along with pallet processing time, worker and forklift throughput usage percentage. Detailed findings are clearly stated at the end of this paper. Research limitations/implications This study is limited to the warehouse environment and further additional process models and functional upgrades in the DES software systems are very much needed to directly visualize and quantify all the possible Lean assumptions such as radio frequency image identification/Andon (Jidoka), 5S, Kanban, Just-In-Time and Heijunka. However, DES has a leading edge in extracting dynamic characteristics out of a static VSM timeline and capture details on discrete events precisely by picturizing facility modification and lead time related to it. Practical implications This paper includes all the fundamental pharmaceutical warehouse supply chain processes and the simulations of the future state VSM in a real-life context by successfully reducing supply chain lead time and allowing managers in inculcating near-optimal decision-making, controlling and coordinating warehouse supply chain activities as a whole. Social implications This integrated approach of DES and VSM can involve managers and top management to support the adoption of anticipated changes. This study also has the potential to engage practitioners, researchers and decision-makers in the warehouse industry. Originality/value This study involves a powerful DES software package that can mimic the real situation as a virtual simulation and all the data and model building are based on a real warehouse scenario in the pharmaceutical industry.
Bio-plastics are rapidly growing in popularity, and many new techniques and approaches are emerging as a result of intensive research and development (R&D) activities. Many industries worldwide are installing their new production capability. Bio-plastics have attracted political leaders’ interest, especially in light of the evolving bio-economic orientation, through their use of renewable resources and their effects on sustainable growth. Related market determinants are defined, classified, and used as a base for their own estimates. The evolution of global production capacity is modeled annually for the timeframe up to 2030 by applying a system dynamics strategy. For a long-term forecast to catch the inherent volatility, various scenarios are identified and added to the model to represent different trends in the price of gross domestic product (GDP), oil, and bioplastic feedstock. Thus, our findings show the sensitivity in the macro-economic climate of the bioplastics sector. The simulations are completed by a debate on the regulatory environment and its future effect on industry development at the European level. The findings show considerable potential for development but are vulnerable to political and economic impacts.
PurposeThe latest novel coronavirus disease 2019 (COVID-10) pandemic continues to have a significant social and financial impact globally. It is very essential to study, categorize and systematize published research on mitigation strategies adopted during previous pandemic scenario that could provide an insight into improving the current crisis. The goal of this paper is to systematize and identify gaps in previous research and suggest potential recommendations as a conceptual framework from a strategic point of view.Design/methodology/approachA systematic review of Scopus and Web of Science (WoS) core collection databases was performed based on strict keyword search selections followed by a bibliometric meta-analysis of the final dataset.FindingsThis study indicated that the traditional mitigation techniques adopted during past pandemics are in place but are not capable of managing the transmission capability and virulence of COVID-19. There is a greater need for rethinking and re-engineering short and long-term approaches to prevent, control and contain the current pandemic situation.Practical implicationsIntegrating various mitigation approaches shall assist in flattening the pandemic curve and help in the long run.Originality/valueArticles, conference proceedings, books, book chapters and other references from two extensive databases (Scopus and WoS) were purposively considered for this study. The search was confined to the selected keywords outlined in the methodology section of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.