(abridged) We develop a model which describes the coevolution of the mass function of dense cores and of the IMF in a protocluster clump. In the model, cores injected in the clump evolve under the effect of gas accretion. Accretion onto the cores follows a time-dependent accretion rate that describes accretion in a turbulent medium. Once the accretion timescales of cores exceed their contraction timescales, they are turned into stars. We include the effect of feedback by the newly formed massive stars through their stellar winds. A fraction of the wind's energy is assumed to counter gravity and disperse the gas from the protocluster and as a consequence, quench further star formation. The latter effect sets the final IMF of the cluster. We apply our model to a clump that is expected to resemble the progenitor clump of the Orion Nebula Cluster (ONC). Our model is able to reproduce both the shape and normalization of the ONC's IMF and the mass function of dense cores in Orion. The complex features of the ONC's IMF,i.e., a shallow slope in the mass range ~0.3-2.5 Msol,a steeper slope in the mass range ~2.5-12 Msol, and a nearly flat tail at the high mass end are reproduced. The model predicts a 'rapid' star formation process with an age spread for the stars of 2.3 10^5 yr which is consistent with the fact that 80% of the ONC's stars have ages of <=0.3 Myr. The model predicts a primordial mass segregation with the most massive stars being born in the region between 2-4 times the core radius of the cluster. In parallel, the model also reproduces, simultaneously, the mass function of dense cores in Orion. We study the effects of varying the model parameters on the resulting IMF and show that the IMF of stellar clusters is expected to show significant variations, provided variations in the clumps and cores properties exist.Comment: accepted to MNRAS. 22 pages, 17 figures. 2 new sections added to better present the model parameters and compare to previous work. Some figures are now better presented. Main conclusions unchange
We investigate the effects of a large‐scale magnetic field with open field lines on the steady‐state structure of a radiation‐dominated accretion disc, using the self‐similarity technique. The disc is supposed to be turbulent and possesses an effective viscosity and an effective magnetic diffusivity. We consider the extreme case in which the generated energy due to viscous and magnetic dissipation is balanced by advection cooling. While the magnetic field outside of the disc is treated in a phenomenological way, the internal field is determined self‐consistently. Magnetized and non‐magnetized solutions have the same radial dependence, irrespective of the values of the input parameters. Generally, our self‐similar solutions are very sensitive to the viscosity or diffusivity coefficients. For example, the density and the rotation velocity increase when the viscosity coefficient decreases. The gas rotates with sub‐Keplerian angular velocity with a factor less than unity which depends on the magnetic field configuration. The magnetic field significantly reduces disc thickness; however, it tends to increase the radial velocity compared to the non‐magnetic self‐similar solutions.
We investigate orbital motion of spherical, pressure-confined clouds in the broad-line region (BLR) of active galactic nuclei (AGN). The combined influence of gravity of the central object and the non-isotropic radiation of the central source are taking into account. While most of the previous studies assume that the pressure of the intercloud gaseous component is proportional to a power-law function of the radial coordinate, we generalize it to a case where the external pressure depends on both the radial distance and the latitudinal angle. Our prescribed pressure profile determines the radius and the column density of BLR clouds as a function of their location. We also discuss about stability of the orbits and a condition for the existence of bound orbits is obtained. We found that BLR clouds tend to populate the equatorial regions more than other parts simply because of the stability considerations. Although this finding is obtained for a particular pressure profile, we think, this result is valid as long as the pressure distribution of the intercloud medium decreases from the equator to the pole.
Dynamics of clumps within a magnetized advection dominated accretion flow is investigated by solving the collisionless Boltzmann equation and considering the drag force due to the relative velocity between the clumps and the gas. Toroidal component of the magnetic field is assumed to be dominant. Dynamical properties of the hot gaseous component such as the radial and the rotational velocities are affected by the magnetic effects, and so, drag force varies depending on the strength of magnetic field and the velocity dispersion of the clumps is then modified significantly. We show that when magnetic pressure is less than the gas pressure, the root of the averaged radial velocity square of the clumps decreases at the inner parts of the hot flow and increases slightly at its outer edge.
We present a linear perturbation analysis of the magnetorotational instability in the presence of the cosmic rays. Dynamical effects of the cosmic rays are considered by a fluid description and the diffusion of cosmic rays is only along the magnetic field lines. We show an enhancement in the growth rate of the unstable mode because of the existence of cosmic rays. But as the diffusion of cosmic rays increases, we see that the growth rate decreases. Thus, cosmic rays have a destabilizing role in the magnetorotational instability of the accretion discs.Comment: Accepted for publication in Astrophysics & Space Scienc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.