International audienceThe aim of this study was to model the mechanical behavior of interfaces in masonry structures. In the first part, the characteristics of the materials and interfaces involved are determined experimentally. In the second part, a model based on the adhesion intensity is developed. This model can be used to describe the interfaces between mortar and full or hollow bricks and to describe the damage occuring in the mortar. The mechanical behavior predicted by this model is compared with previously obtained experimental data. The model is then tested in the case of some classical masonry structures (small walls, diagonal compression tests)
International audienceIn this paper an interface model accounting for roughness and micro-cracks is presented and applied to masonry-like structures. The model is consistently derived by coupling a homogenization approach and arguments of asymptotic analyses. A numerical procedure is introduced and numerical results, based on a finite element formulation, are successfully compared with experimental data , obtained on masonry samples undergoing to shear tests. Finally, a parametric numerical analysis is proposed, highlighting the influence of the roughness features on the interface response
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.