Abiotic stresses adversely affect plant growth and ultimately crop productivity. Of these, water-logging is the most widespread and most commonly experienced stress factor. While water is essential for all plant growth and development processes, waterlogging is an obstacle to sustainable agriculture. Recent FAO reports indicate that universal crop production must be enhanced by 70% by 2050 in order to meet the growing demand for food by an estimated 2.3 billion people. As demand for food increases, there is an urgent need to identify environment-friendly strategies capable of being accepted and adopted widely to enhance crop yields and mitigate the effects of climate change. Nanotechnology as a science of manipulating materials at the nano-scale has significant potential to enhance agricultural productivity by nonconventional means. This technology has been gaining momentum lately as a possible solution to reduce the adverse effects associated with various stresses, particularly with waterlogging, to enhance future food security. This paper discusses the potential applications of nanoparticles to achieve sustainable crop productivity, together with their impact on the mechanism of tolerance to waterlogging stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.