Each year, millions of dollars are invested on road maintenance and reparation all over the world. In order to minimize costs, one of the main aspects is the early detection of those flaws. Different types of cracks require different types of repairs; therefore, not only a crack detection is required but a crack type classification. Also, the earlier the crack is detected, the cheaper the reparation is. Once the images are captured, several processes are applied in order to extract the main characteristics for emphasizing the cracks (logarithmic transformation, bilateral filter, Canny algorithm, and a morphological filter). After image preprocessing, a decision tree heuristic algorithm is applied to finally classify the image. This work obtained an average of 88% of success detecting cracks and an 80% of success detecting the type of the crack. It could be implemented in a vehicle traveling as fast as 130 kmh or 81 mph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.