Distribution networks were conceived to distribute the energy received from transmission and subtransmission to supply passive loads. This approach, however, is not valid anymore due to the presence of distributed generation, which is mainly based on renewable energies, and the increased number of plug-in electric vehicles that are connected at this voltage level for domestic use. In this paper the ongoing transition that distribution networks face is addressed. Whereas distributed renewable energy sources increase nodal voltages, electric vehicles result in demand surges higher than the load predictions considered when planning these networks, leading to congestion in distribution lines and transformers. Additionally, centralized control techniques are analyzed to reduce the impact of distributed generation and electric vehicles and increase their effective integration. A classification of the different methodologies applied to the problems of voltage control and congestion management is presented.
36% of the energy consumed and 40% of emissions are due to buildings in the residential and tertiary sectors. These antecedents have forced governments to focus on saving energy and reducing emissions in this sector. To help government decision-making and facilitate energy planning for utilities, this work analyzes the energy consumption that occurs in city buildings. The information used to carry it out is publicly accessible. The study is carried out from the point of view of the population density of the cities, and these are analyzed individually. Furthermore, the area actually occupied by the city has been considered. The results are studied by inhabitant and household. The proposed method has been applied to the case of Spanish cities with more than 50,000 inhabitants. The results show that the higher the population density, the higher the energy consumption. This occurs both per inhabitant and per household. Furthermore, the consumption of electrical energy is inelastic, which is not the case with the consumption of thermal origin.
More than 50% of the world’s population lives in cities. Its buildings consume more than a third of the energy and generate 40% of the emissions. This makes cities in general and their buildings in particular priority points of attention for policymakers and utilities. This paper uses population density as a variable to know its influence on energy consumption and emissions produced in buildings. Furthermore, to show its effect more clearly, the influence of the climate was eliminated. The usual energy consumption in buildings is thermal and electrical. The study was carried out at the city level, both per inhabitant and per household. The area actually occupied by the city was considered. The proposed method was applied to the case of Spanish cities with more than 50,000 inhabitants. The results show that the higher the population density, the higher the energy consumption per inhabitant and household in buildings. The consumption of thermal energy is elastic, while that of electrical energy is inelastic, varying more than 100% between extreme groups. Regarding CO2 emissions, the higher the population density, the higher the emissions. Emissions of electrical origin barely vary by 2% and are greater than those of thermal origin. In addition, the proportion of emissions of electrical origin, with respect to the total, decreases with increasing population density from 74% to 55%. This research aims to help policymakers and utilities to take the appropriate measures that favor the use of renewable energies and reduce CO2 emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.