Interactive effects of light and temperature on aspects of seasonality were studied in female British Saanen dairy goats. Four groups of adult non-pregnant non-lactating goats (n = 5) were housed under the following conditions: controls (July-June): natural photoperiod and temperature; group 1 (July-December): long days (16 h light: 8 h dark) and natural temperature; group 2 (July-December): long days and average summer temperature (17.6 degrees C); group 3 (December-June): short days (8 h light: 16 h dark) and winter temperature (8.4 degrees C). Plasma prolactin and progesterone were measured once a week, circadian changes in prolactin and melatonin were determined in December and May, and coat development was assessed. Seasonal variation in prolactin was influenced by manipulation of both daylength and temperature. In group 1, prolactin concentrations decreased as the environmental temperature decreased, despite maintenance of long days. When light and temperature were maintained under summer (group 2) and winter (group 3) conditions, prolactin remained relatively constant, although at different high and low set points, respectively, but with indications of a seasonal rhythm. An asymptotic relationship between prolactin and temperature was maintained under all daylengths. The circadian pattern of melatonin was related to daylength and was not influenced significantly by temperature. Onset of oestrus was unaltered. In group 3 (maintained winter solstice light and temperature), anoestrus was delayed (P < 0.05) from a median control date of 17 March to a median date of 28 April. Winter coat development was delayed in group 1; group 2 showed premature moulting of the winter coat; and in group 3, development of the summer coat was delayed. The results imply that temperature modifies the influence of daylength on prolactin secretion and hair follicle growth by mechanisms that do not involve melatonin.
To avoid winter scarcity of fresh goat milk, simple methods of advancing the season of kidding would be commercially valuable. A combination of long-day light treatment followed by melatonin is successful but other aspects of seasonality including coat growth are also reset. To investigate whether effects on breeding season and coat growth can be dissociated, British Saanen dairy goats (no. = 30) were randomly allocated to one of six groups. Control goats were untreated.
Supplements of dietary fat are highly effective in boosting energy intake at critical phases during the reproductive cycle. When fed to ruminants in the form of calcium salts of fatty acids, they have been shown to increase plasma cholesterol and progesterone levels (Spicer et al, 1993) which, in turn, could have beneficial effects on ovulation rate and embryo quality. In sheep, a likely reproductive state for a physiological response to a lipid supplement is during the superovulation of young animals in which the post-ovulatory steroidogenic capacity of the corpora lutea may be sub-optimal. The present study examined the effects of donor age and dietary fat on plasma progesterone concentration, and the yield and quality of embryos in superovulated Cheviot sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.