The first direct synthesis of PhMe2SiZnI and Me3SiZnI reagents from silyl iodides is described. They can be obtained as solids and stored at 4 °C for extended periods. The versatility of solid Me3SiZnI is demonstrated in a variety of reactions.
The increased synthetic utility of organosilanes motivates researchers to develop a milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3 SiLi itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and economical strategy. We describe for the first time, the direct synthesis of PhMe2 SiZnI and Me3 SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solid and stored for longer periods of time. We demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3 SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
The increased synthetic utility of organosilanes motivates researchers to develop a milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3 SiLi itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and economical strategy. We describe for the first time, the direct synthesis of PhMe2 SiZnI and Me3 SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solid and stored for longer periods of time. We demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3 SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
The increased synthetic utility of organosilanes motivates researchers to develop a milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3 SiLi itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and economical strategy. We describe for the first time, the direct synthesis of PhMe2 SiZnI and Me3 SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solid and stored for longer periods of time. We demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3 SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
The increased synthetic utility of organosilanes motivates researchers to develop a milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3 SiLi itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and economical strategy. We describe for the first time, the direct synthesis of PhMe2 SiZnI and Me3 SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solid and stored for longer periods of time. We demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3 SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.