Hybrid power generation system such as photovoltaic (PV)-diesel is one of the solution to reduce operational cost of the conventional diesel generation system. However, fluctuation of PV power due to uncertainty in weather condition may generate an unstable frequency of system. Further, it may reduce the reliability of the power utility, especially when the penetration of PV power is large. Therefore, a frequency control approach that involving PV with battery supervised by neural network algorithm is proposed to generate a stable system frequency. This method can reduce the frequency deviation without smoothing PV output power. The PV panels can generate maximum power according to the weather condition and frequency deviation. The PV output power and battery output power is controlled by neural network algorithm control. The neural network algorithm control is considering frequency deviation, average insolation and change of insolation as input. The proposed method is compared with similar system but without the existence of battery as energy storage system. The simulation results show that the proposed method can generate small frequency deviation compared with system without battery.
Dalam makalah ini diuraikan sistem hibrid yang menggabungkan Turbin Angin dan Photovoltaic untuk memasok listrik terus-menerus pada beban. Output dari Turbin Angin dan Photovoltaic diatur agar menghasilkan daya yang maksimum. Konverter multiple-input buck-boost dc-dc digunakan untuk mengatur aliran daya agar didapatkan MPP(Maximum Power Point). Kontrol konverter menggunakan Fuzzy Logic controller untuk mengkontrol output sehingga didapat MPP(Maximum Power Point) dari Turbin Angin dan Photovoltaic, sehingga effisiensi dari Turbin Angin dan Photovoltaic dapat ditingkatkan.
Bagan tancap is a conventional fishing using diesel as its main source. This conventional method needs to be replaced with an eco-friendly and easy to use system, namely solar panels. The solar panels power is just limited by time so the stability of the system is poorly maintained that needs to be a battery as a storage of energy to improve system stability. However, the power that is not optimal causes the charging battery to take longer and not be constant with periods of weather and irradiation coditions. The charging battery without MPPT it tends not to be optimal because the solar panel does not operate at its maximum value. MPPT with perturb and observe algorithms can maximize power on solar cells with tracking speeds that depend on the response speed of the converter. While boost coverter has the ability to maintain potential differences that are tailored to the battery specifications and keep the current and voltage ripple values relatively small. For this reason, this final project will design and implement solar charge controller equipped with MPPT P & O (Perturb and Observe) and boost converter, this method can maximize the power of the solar panel by 97.84% with a faster charging time for 27 minutes.Keywords—Light Fishing, MPPT, Perturb and Observe, Solar Charge Controller
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.