Despite the effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines against SARS-CoV-2, the delta (B.1.617.2) variant of concern (VOC) has spread globally, and breakthrough infections have been reported. We identified the circulating variants and effectiveness of those vaccines between April and June 2021 at a tertiary-care hospital in Saudi Arabia. Among 320 patients with confirmed COVID-19 (mean age, 39 years; 53.6% male), 70.6% received a one-dose vaccination; 15.1% received two-dose vaccinations; 14. 3% were unvaccinated; 64.9% received Oxford-AstraZeneca; and 32.5% received Pfizer-BioNTech. Most breakthrough cases involving VOCs (71%) occurred among patients who received a one-dose Oxford-AstraZeneca vaccination, and most patients with breakthrough disease were infected with the delta variant. Among all VOCs and non-VOCS, the delta variant was most frequently detected and was associated with young age (20–49 years), males, symptoms, and low cycle threshold value. These findings indicate an increased rate of transmission for the delta variant in this cohort.
SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations’ associations with clinical outcomes.
ObjectiveTo describe the chronological genomic evolution of SARS-CoV-2 and its impact on public health in the Middle East and North Africa (MENA) region.MethodsThis study analysed all available SARS-CoV-2 genomic sequences, metadata and rates of COVID-19 infection from the MENA region retrieved from the Global Initiative on Sharing All Influenza Data database from January 2020 to August 2021. Inferential and descriptive statistics were conducted to describe the epidemiology of SARS-CoV-2.ResultsGenomic surveillance of SARS-CoV-2 in the MENA region indicated that the variants in January 2020 predominately belonged to the G, GR, GH or O clades and that the most common variant of concern was Alpha. By August 2021, however, the GK clade dominated (57.4% of all sequenced genomes), followed by the G clade (18.7%) and the GR clade (11.6%). In August, the most commonly sequenced variants of concern were Delta in the Middle East region (91%); Alpha (44.3%) followed by Delta (29.7%) and Beta (25.3%) in the North Africa region; and Alpha (88.9%), followed by Delta (10%) in the fragile and conflict-affected regions of MENA. The mean proportion of the variants of concern among the total sequenced samples differed significantly by country (F=1.93, P=0.0112) but not by major MENA region (F=0.14, P=0.27) or by vaccination coverage (F=1.84, P=0.176).ConclusionThis analysis of the genomic surveillance of SARS-CoV-2 provides an essential description the virus evolution and its impact on public health safety in the MENA region. As of August 2021, the Delta variant showed a genomic advantage in the MENA region. The MENA region includes several fragile and conflict-affected countries with extremely low levels of vaccination coverage and little genomic surveillance, which may soon exacerbate the existing health crisis within those countries and globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.