Multiphase flow meters (MPFM) have been known save costs for new installations, are compact and as effective as a test separator. Field "F" is a green field with 2 wells and has been producing since 2018 from the same reservoir. The test facilities consist of an MPFM, and F flows to a hub called Field "G". Towards Q2 of 2019, there was a significant increase in production rates from both wells without any changes to surface choke size and without enhancement jobs performed. Added to that, reservoir pressure showed steady depletion. Daily production allocation for F showed lower than usual reconciliation factor when combined with G hub production. This suboptimal allocation raised doubts about the MPFM well test readings which launched a full investigation into the accuracy of the meter. From the offshore remote monitoring system, the first suspect was the increased inlet pressure causing parameters to be out of the MPFM operating envelope range. However, after further checking, there were other pressing issues such as faulty transmitter, and low range sensors. As these issues were being dealt with amidst the COVID-19 pandemic, the process to fix the meter was longer than usual. Rectification involved troubleshooting the MPFM post performing Multi Rate Tests, back allocation check to hub production and PROSPER/GAP model matching to check on the credibility of the well tests. These efforts were made due to budget cuts, as there was no advantage to bring onboard an entire well test package (separator) to test the F wells. Post several rectifications, the liquid, gas and oil rates were within 10% difference from allocation meter back allocation and PROSPER model calculation. Reconciliation factor for field G has also increased to normal range of 0.92 to 0.95. However, the rectification also showed a significant drop in metered rates, proving that the MPFM was indeed generating incorrect well tests since Q2 2019. The drop was higher than 30% in gross production rates which lead to a better understanding of the reservoir, and corrections to be made to dynamic models for any future development projects. This hence proves that even with the similar reservoir properties in both wells, the MPFM well tests still require vigorous checking and should not be treated in the same way as a test separator. This paper will describe the efforts by surface and subsurface faculties to ensure the quality of well tests from the MPFM. For future projects considering the MPFM installation, best to frequently quality check the MPFM well test figures with a test separator. However, if that option is not feasible, the efforts in this paper can act as a guide for the field.
Smart field accessories are already widely used in the industry. Donkey field is ready to jump on the bandwagon by installing 8 wells with these accessories. In addition, Donkey field is equipped with data transmission system or we called it Integrated Operation (IO) where the data is transmitted directly to shore for faster decision making and continuous data monitoring. For every installation for these jewelries, the question is always why do we need these? Most of the time, well inaccessible is the drive of their installation. But, the benefit of this jewelries are beyond that. For example, optimization for commingle is easier for this installation. With Inflow Control Valve (ICV), it is easier to control its injection for each layer. IO helped the engineer to dive deep into well and reservoir performance or problem. This technology helps the engineer to have full picture on field potential. So, where is the problem? "Smart well" have a good ring to our ear which make us forget what is the challenges underlying its installation. After 2 years of its installation, almost all these jewelries began to shows their problem. Team face quite a challenge to rectify this problem especially on well jewelries. Because of the location of the field, transmitters’ signals are really impacted by the weather. With the tropical climate of Donkey field, the data missing for interpretation is quite massive. Hence, it is difficult to get good data for it. During initial design stage, everyone need to consider the configuration and location of the field before we start to consider these expensive jewelries. Do we really need it? And are we ready for its maintenance, not just on its installation? How frequent is its maintenance? All of these need to be considered before we jump on the bandwagon.
Water injection was implemented in a 30-year old brownfield offshore Sarawak, Malaysia in August 2016. Seawater is processed at a Water Injection Facility (WIF) and sent to four injectors, each injecting commingled into two or three different reservoirs. This paper discusses on challenges faced in initial start-up of water injection in a brownfield including the inability to meet target injection rate, frequent WIF trips and off-spec injection water, metering issues, as well as mitigation measures and lessons learned. Initially, the injectors were able to take in only 33% of target injection volume as per the FDP plan. To remedy this, a ramp-up injection procedure was introduced to allow the injectors to gradually take in more water until the target injection rate could be achieved. A leaner and practical water quality SOP was devised to reduce injector downtime, particularly for satellite platforms, while ensuring water quality is not compromised. Injection fall-off testing was performed on the injectors to investigate the root cause of the injectivity issue through manipulation of downhole ICV. Through this exercise, it was discovered that the injection meters were not properly calibrated. A combination of these methods proved successful in improving injection rate of the water injectors. Initial SOP developed for the injection water quality required testing of water quality at each sampling point including at unmanned satellite platforms, prior to recommencement of water injection post WIF shutdown. This is despite the duration of shutdown being shorter than the frequency of required sampling, which led to prolonged injection downtime. The requirement for water sampling for satellite platforms were modified to be less stringent while still maintaining good water quality. As a result, there was an improvement in WIF uptime from 92% in second month of injection to 99% in the fifth month. The fall-off testing provided valuable information in terms of well and reservoir data. Careful and specific operational steps were required to adjust the downhole ICVs during fall-off testing, as opposed to hard shut-in of the water injectors which would cause backpressure and tripping of the WIF. Adjustment of the surface-controlled ICVs allowed sequential testing of different zones, which successfully shortened the total testing duration by 25%. The fall-off test also revealed that an injector was injecting into a reservoir which did not benefit any producers, and that the flowmeters for certain injectors were not calibrated properly. Through these efforts, injection rates were successfully increased by 25 kbwpd, from 35% to 75% of the total injection target, within six months of its implementation. Water injection start-up challenges and mitigation methods are not often discussed in literature, such as adjustments needed to achieve target injection rate, operational steps in well testing for commingled injectors, and finding the optimum balance between quality and practicality of injected water testing. It is hoped that the issues and strategy in this field will serve as lessons learnt for upcoming water injection projects in this and nearby fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.