This paper presents a new wearable e-textile based system, named SWEET Sock, for biomedical signals remote monitoring. The system includes a textile sensing sock, an electronic unit for data transmission, a custom-made Android application for real-time signal visualization, and a software desktop for advanced digital signal processing. The device allows the acquisition of angular velocities of the lower limbs and plantar pressure signals, which are postprocessed to have a complete and schematic overview of patient’s clinical status, regarding gait and postural assessment. In this work, device performances are validated by evaluating the agreement between the prototype and an optoelectronic system for gait analysis on a set of free walk acquisitions. Results show good agreement between the systems in the assessment of gait cycle time and cadence, while the presence of systematic and proportional errors are pointed out for swing and stance time parameters. Worse results were obtained in the comparison of spatial metrics. The “wearability” of the system and its comfortable use make it suitable to be used in domestic environment for the continuous remote health monitoring of de-hospitalized patients but also in the ergonomic assessment of health workers, thanks to its low invasiveness.
Heart-rate variability has proved a valid tool in prognosis definition of patients with congestive heart failure (CHF). Previous research has documented Poincaré plot analysis as a valuable approach to study heart-rate variability performance among different subjects. In this paper, we explored the possibility to feed machine-learning (ML) algorithms using unconventional quantitative parameters extracted from Poincaré plots (generated from 24-h electrocardiogram recordings) to classify patients with CHF belonging to different New York Heart Association (NYHA) classes. We performed in sequence the following investigations: first, a statistical analysis was carried out on 9 morphological parameters, automatically measured from Poincaré plots. Subsequently, a feature selection through a wrapper with a 10-fold cross-validation method was performed to find the best subset of features which maximized the classification accuracy for each considered ML algorithm. Finally, patient classification was assessed through a ML analysis using AdaBoost of Decision Tree, k-Nearest Neighbors and Naive Bayes algorithms. A univariate statistical analysis proved 5 out of 9 parameters presented statistically significant differences among patients of distinct NYHA classes; similarly, a multivariate logistic regression confirmed the importance of the parameter ρy in the separability between low-risk and high-risk classes. The ML analysis achieved promising results in terms of evaluation metrics (especially the Naive Bayes algorithm), with accuracies greater than 80% and Area Under the Receiver Operating Curve indices greater than 0.7 for the overall three algorithms. The study indicates the proposed features have a predictive power to discriminate the NYHA classes, to which the features seem evenly correlated. Despite the NYHA classification being subjective and easily recognized by cardiologists, the potential relevance in the clinical cardiology of the proposed features and the promising ML results implies the methodology could be a valuable approach to automatically classify CHF. Future investigations on enriched datasets may further confirm the presented evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.