These data suggest a protective role for RD1 peptide-specific CD4+ effector T cells, which undergo clonal expansion during Mycobacterium tuberculosis replication and then a contraction phase after disease resolution, culminating in the generation of CD4+ memory T cells.
We recently set up a gamma interferon (IFN-␥) enzyme-linked immunospot assay (ELISPOT), using selected early secreted antigenic target 6 (ESAT-6) peptides, that appears specific for active tuberculosis (A-TB). However, ELISPOT is difficult to automate. Thus, the objective of this study was to determine if the same selected peptides may be used in a technique more suitable for routine work in clinical laboratories, such as whole-blood enzyme-linked immunosorbent assay (WBE). For this purpose, 27 patients with A-TB and 41 control patients were enrolled. Our WBE, using the already described selected peptides from ESAT-6 plus three new ones from culture filtrate protein 10, was performed, and data were compared with those obtained by ELISPOT. Using our selected peptides, IFN-␥ production, evaluated by both WBE and ELISPOT, was significantly higher in patients with A-TB than in controls (P < 0.0001). Statistical analysis showed a good correlation between the results obtained by WBE and ELISPOT (r ؍ 0.80, P < 0.001). To substantiate our data, we compared our WBE results with those obtained by QuantiFERON-TB Gold, a whole-blood assay based on region of difference 1 (RD1) overlapping peptides approved for TB infection diagnosis. We observed a slightly higher sensitivity with QuantiFERON-TB Gold than with our WBE (89% versus 81%); however, our test provided a better specificity result (90% versus 68%). In conclusion, results obtained by WBE based on selected RD1 peptides significantly correlate with those generated by ELISPOT. Moreover, our assay appears more specific for A-TB diagnosis than QuantiFERON-TB Gold, and thus it may represent a complementary tool for A-TB diagnosis for routine use in clinical laboratories.
Rationale: Existing data on the effect of treatment of latent tuberculosis infection (LTBI) on T-cell responses to Mycobacterium tuberculosis (MTB)-specific antigens are contradictory. Differences in technical aspects of the assays used to detect this response and populations studied might explain some of these discrepancies. In an attempt to find surrogate markers of the effect of LTBI treatment, it would be important to determine whether, among contacts of patients with contagious tuberculosis, therapy for LTBI could cause changes in MTB-specific immune responses to a variety of RD1-antigens.
Methods and results:In a longitudinal study, 44 tuberculin skin test + recent contacts were followed over a 6-month period and divided according to previous exposure to MTB and LTBI treatment. The following tests which evaluate IFN-gamma responses to RD1 antigens were performed: QuantiFERON TB Gold, RD1 intact protein-and selected peptide-based assays. Among the 24 contacts without previous exposure that completed therapy, we showed a significant decrease of IFN-gamma response in all tests employed. The response to RD1 selected peptides was found to be more markedly decreased compared to that to other RD1 antigens. Conversely, no significant changes in the response to RD1 reagents were found in 9 treated subjects with a known previous exposure to MTB and in 11 untreated controls.
Conclusion:These data suggest that the effect of INH prophylaxis on RD1-specific T-cell responses may be different based on the population of subjects enrolled (recent infection versus re-infection) and, to a minor extent, on the reagents used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.