The electron occupancy of 3d-orbitals determines the properties of transition metal oxides. This can be achieved, for example, through thin-film heterostructure engineering of ABO 3 oxides, enabling emerging properties at interfaces. Interestingly, epitaxial strain may break the degeneracy of 3d-e g and t 2g orbitals, thus favoring a particular orbital filling with consequences for functional properties. Here we disclose the effects of symmetry breaking at free surfaces of ABO 3 perovskite epitaxial films and show that it can be combined with substrate-induced epitaxial strain to tailor at will the electron occupancy of in-plane and out-of-plane surface electronic orbitals. We use X-ray linear dichroism to monitor the relative contributions of surface, strain and atomic terminations to the occupancy of 3z 2 -r 2 and x 2 -y 2 orbitals in La 2/3 Sr 1/3 MnO 3 films. These findings open the possibility of an active tuning of surface electronic and magnetic properties as well as chemical properties (catalytic reactivity, wettability and so on).
The local atomic structure and chemical nature of newly synthesized silver nanoparticles (AgNPs) functionalized with the organic thiol allylmercaptane (AM) have been probed combining synchrotron radiation-based techniques: Xray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS). Complementary information about the chemical and electronic structure is obtained combining XAES and XPS data. These results coherently suggest a core shell morphology of the NPs resulting in metallic Ag cores surrounded by Ag2S-like phase. The external layer of AM molecules is grafted to the NPs surface through Ag-S chemical bonds. NP size and composition were found as a function of the chemical synthetic route (i.e., Ag/A.M molar ratio). It was observed that by increasing the Ag/AM ratio, larger AgNPs were obtained. It was found that a higher Ag/AM molar ratio leads to an increasing of the Ag2S layer thickness, while the external AM layer remains unvaried. TEM analysis showed well-separated and dispersed nanoparticles, and ED pattern allowed one to identify two different phases of single crystal corresponding to the presence of Ag face-center-cubic single-crystal symmetry, together with weak diffraction spots in agreement with Ag2S cubic symmetry in Im3m space groups
In-situ metalation of porphyrin molecules in ultrahigh vacuum (UHV) is of great interest for the characterization of pure species in a controlled environment. Here, we report the characterization of the electronic states and the moleculesʼ geometrical adaptation during the formation of pure 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) and Fe- tetraphenylporphyrin (Fe-TPP) layers on Ag(111) single crystal. Core level absorption spectra indicate the flat conformation of the monolayer suggesting an adatom hopping instead of a surface mediated dopant diffusion for the metalation process. Photoemission points out that the interaction between Fe d
z
-states and Ag bands increases the monolayer metallic character already induced by the charge transfer from the substrate.
Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation.
The electronic structure in the normal state of CeFeAsO0.89F0.11 oxypnictide superconductors has been investigated with x-ray absorption and photoemission spectroscopy. All of the data exhibit signatures of Fe d-electron itinerancy. Exchange multiplets appearing in the Fe 3s core level indicate the presence of itinerant spin fluctuations. These findings suggest that the underlying physics and the origin of superconductivity in these materials are likely to be quite different from those of the cuprate high-temperature superconductors. These materials provide opportunities for elucidating the role of magnetic fluctuations in high-temperature superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.