Abstract. The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a modular flexible data management facility. This paper presents the newly developed MESSy submodel, ACCF version 1.0 (ACCF 1.0), based on algorithmic Climate Change Functions version 1.0 (aCCFs 1.0), which describes the climate impact of aviation emissions. The ACCF 1.0 is coupled via the second version of the standard MESSy infrastructure. ACCF 1.0 takes the simulated atmospheric conditions at the location of emission as input to calculate the climate impact (in terms of average temperature response over 20 years (ATR20)) of aviation emissions, including CO2 and non-CO2 impacts, such as from NOx emissions (via ozone production and methane destruction), water vapour emissions, and contrail-cirrus. The online calculated ATR20 value per emitted mass fuel burn or flown-kilometer using ACCF 1.0 in the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is presented. We perform quality checks of the ACCF 1.0 outputs in two aspects. Firstly, we compare climatological values calculated by the ACCF 1.0 to previous studies. Secondly, we evaluate the reduction of NOx-induced O3 effects through trajectory optimization, employing the tagging chemistry approach (contribution approach to tag species according to their emission categories and to inherit these tags to other species during the subsequent chemical reactions). Finally, we couple the ACCF 1.0 to the air traffic simulation submodel AirTraf version 2.0 and demonstrate the variability of the flight trajectories when the efficacy of individual effect is considered.
Abstract. Aviation aims to reduce its climate impact by adopting trajectories, that avoid those regions of the atmosphere where aviation emissions have a large impact. To that end, prototype algorithmic climate change functions can be used, which provide spatially and temporally resolved information on aviation’s climate impact in terms of future near-surface temperature change. These alogorithmic climate change functions can be calculated with meteorological input data obtained from e.g. numerical weather prediction models. We here present an open-source Python Library, an easy to use and flexible tool which efficiently calculates both the individual algorithmic climate change functions of water vapour, nitrogen oxide (NOx) induced ozone and methane, and contrail-cirrus and also the merged non-CO2 algorithmic climate change functions that combine all individual contributions. These merged aCCFs can be only constructed with the technical specification of aircraft/engine parameters, i.e., NOx emission indices and flown distance per kg burnt fuel. These aircraft/engine specific values are provided within CLIMaCCF version V1.0 for a set of aggregated aircraft/engine classes (i.e. regional, single-aisle, wide-body). Moreover, CLIMaCCF allows by a user-friendly configuration setting to choose between a set of different physical climate metrics (i.e. average temperature response for pulse or future scenario emissions over the time horizons of 20, 50 or 100 years). Finally, we demonstrate the abilities of CLIMaCCF by a series of example applications.
The strong growth rate of the aviation industry in recent years has created significant challenges in terms of environmental impact. Air traffic contributes to climate change through the emission of carbon dioxide (CO2) and other non-CO2 effects, and the associated climate impact is expected to soar further. The mitigation of CO2 contributions to the net climate impact can be achieved using novel propulsion, jet fuels, and continuous improvements of aircraft efficiency, whose solutions lack in immediacy. On the other hand, the climate impact associated with non- CO2 emissions, being responsible for two-thirds of aviation radiative forcing, varies highly with geographic location, altitude, and time of the emission. Consequently, these effects can be reduced by planning proper climate-aware trajectories. To investigate these possibilities, this paper presents a survey on operational strategies proposed in the literature to mitigate aviation’s climate impact. These approaches are classified based on their methodology, climate metrics, reliability, and applicability. Drawing upon this analysis, future lines of research on this topic are delineated.
Abstract. The climate impact of the non-CO2 emissions, being responsible for two-thirds of aviation radiative forcing, highly depends on the atmospheric chemistry and weather conditions. Hence, by planning aircraft trajectories to reroute areas where the non-CO2 climate impacts are strongly enhanced, called climate-sensitive regions, there is a potential to reduce aviation induced non-CO2 climate effects. Weather forecast is inevitably uncertain, which can lead to unreliable determination of climate-sensitive regions and aircraft dynamical behavior and, consequently, inefficient trajectories. In this study, we propose robust climate optimal aircraft trajectory planning within the currently structured airspace considering uncertainties in the standard weather forecasts. The ensemble prediction system is employed to characterize uncertainty in the weather forecast, and climate-sensitive regions are quantified using the prototype algorithmic climate change functions. As the optimization problem is constrained by the structure of airspace, it is associated with hybrid decision spaces. To account for discrete and continuous decision variables in an integrated and more efficient manner, the optimization is conducted on the space of probability distributions defined over flight plans instead of directly searching for the optimal profile. A heuristic algorithm based on the augmented random search is employed and implemented on graphics processing units to solve the proposed stochastic opti- mization computationally fast. The effectiveness of our proposed strategy to plan robust climate optimal trajectories within the structured airspace is analyzed through two scenarios: a scenario with large contrails’ climate impact and a scenario with no formation of persistent contrails. It is shown that, for a night-time flight from Frankfurt to Kyiv, a 55 % reduction in climate impact can be achieved at the expense of a 4 % increase in cost.
Abstract. Using climate-optimized flight trajectories is one essential measure to reduce aviation's climate impact. Detailed knowledge of temporal and spatial climate sensitivity for aviation emissions in the atmosphere is required to realize such a climate mitigation measure. The algorithmic Climate Change Functions (aCCFs) represent the basis for such purposes. This paper presents the first version of the Algorithmic Climate Change Function submodel (ACCF 1.0) within the European Centre HAMburg general circulation model (ECHAM) and Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model framework. In the ACCF 1.0, we implement a set of aCCFs (version 1.0) to estimate the average temperature response over 20 years (ATR20) resulting from aviation CO2 emissions and non-CO2 impacts, such as NOx emissions (via ozone production and methane destruction), water vapour emissions, and contrail cirrus. While the aCCF concept has been introduced in previous research, here, we publish a consistent set of aCCF formulas in terms of fuel scenario, metric, and efficacy for the first time. In particular, this paper elaborates on contrail aCCF development, which has not been published before. ACCF 1.0 uses the simulated atmospheric conditions at the emission location as input to calculate the ATR20 per unit of fuel burned, per NOx emitted, or per flown kilometre. In this research, we perform quality checks of the ACCF 1.0 outputs in two aspects. Firstly, we compare climatological values calculated by ACCF 1.0 to previous studies. The comparison confirms that in the Northern Hemisphere between 150–300 hPa altitude (flight corridor), the vertical and latitudinal structure of NOx-induced ozone and H2O effects are well represented by the ACCF model output. The NOx-induced methane effects increase towards lower altitudes and higher latitudes, which behaves differently from the existing literature. For contrail cirrus, the climatological pattern of the ACCF model output corresponds with the literature, except that contrail-cirrus aCCF generates values at low altitudes near polar regions, which is caused by the conditions set up for contrail formation. Secondly, we evaluate the reduction of NOx-induced ozone effects through trajectory optimization, employing the tagging chemistry approach (contribution approach to tag species according to their emission categories and to inherit these tags to other species during the subsequent chemical reactions). The simulation results show that climate-optimized trajectories reduce the radiative forcing contribution from aviation NOx-induced ozone compared to cost-optimized trajectories. Finally, we couple the ACCF 1.0 to the air traffic simulation submodel AirTraf version 2.0 and demonstrate the variability of the flight trajectories when the efficacy of individual effects is considered. Based on the 1 d simulation results of a subset of European flights, the total ATR20 of the climate-optimized flights is significantly lower (roughly 50 % less) than that of the cost-optimized flights, with the most considerable contribution from contrail cirrus. The CO2 contribution observed in this study is low compared with the non-CO2 effects, which requires further diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.