Whey lactose was hydrolyzed via different biocatalytic and chemical methods in order to establish the optimum procedure to generate a carbon-rich substrate for haloarchaeal production of the biopolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV). Biocatalytic hydrolysis was carried out using the commercially available bacterial β-galactosidase enzyme formulation Maxilact LG 2000 TM and solid fungal β-galactosidase from Aspergillus niger. Different enzyme concentrations, incubation times, temperatures and pH-ranges were investigated to assess the optimum hydrolysis conditions. As major outcome of the undertaken investigation, an addition of 0.25% (v/v) Maxilact LG 2000 TM to whey permeate at pH-value 6.5 and 38°C leads to almost complete (more than 90% w/w) lactose hydrolysis already after only 5 h of stirring, and performs beneficial in terms of hydrolysis kinetics compared to the solid enzyme formulation. As an inexpensive alternative, kinetics of hydrolysis of whey lactose was investigated using different amounts of HCl or H 2 SO 4 , respectively, at 90°C. By adjusting the pH-value to 0.7 or lower and stirring at 90°C for 5 h, a degree of hydrolysis of about 90% (w/w) was achieved. The hydrolysis matter was used as carbon sources for PHBHV bioproduction by the haloarchaeal species Haloferax mediterranei. Independent of the applied hydrolysis method, PHBHV biopolyesters of similar monomeric composition, molar mass and dispersity index Di were accumulated by the strain. The final decision of the most adequate method in future will depend upon the microbial production strain and production scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.