Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.
This paper reports the fabrication of photothermal cryogels for freshwater production via the solar-driven evaporation of seawater. Photothermal cryogels were prepared via in situ oxidative polymerization of pyrrole with ammonium persulfate on preformed poly(sodium acrylate) (PSA) cryogels. We found that the pyrrole concentration used in the fabrication process has a significant effect on the final PSA/PPy cryogels (PPCs), causing the as-formed polypyrrole (PPy) layer on the PPC to evolve from nanoparticles to lamellar sheets and to consolidated thin films. PPC fabricated using the lowest pyrrole concentration (i.e., PPC10) displays the best solar-evaporation efficiency compared to the other samples, which is further improved by switching the operative mode from floating to standing. Specifically, in the latter case, the apparent solar evaporation rate and solar-to-vapor conversion efficiency reach 1.41 kg m –2 h –1 and 96.9%, respectively, due to the contribution of evaporation from the exposed lateral surfaces. The distillate obtained from the condensed vapor, generated via solar evaporation of a synthetic seawater through PPC10, shows an at least 99.99% reduction of Na while all the other elements are reduced to a subppm level. We attribute the superior solar evaporation and desalination performance of PPC10 to its (i) higher photoabsorption efficiency, (ii) higher heat localization effect, (iii) open porous structure that facilitates vapor removal, (iv) rough pore surface that increases the surface area for light absorption and water evaporation, and (v) higher water-absorption capacity to ensure efficient water replenishment to the evaporative sites. It is anticipated that the gained know-how from this study would offer insightful guidelines to better designs of polymer-based 3D photothermal materials for solar evaporation as well as for other emerging solar-related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.