Acetylcholine (ACh) is a major neurotransmitter but also an important signaling molecule in neuron-glia interactions. Expression of ACh receptors has been reported in several glial cell populations, including oligodendrocytes (OLs). Nonetheless, the characterization of muscarinic receptors in these cells, as well as the description of the cholinergic effects at different stages of OL development, is still incomplete. In this study, we characterized the pattern of expression of muscarinic receptor subtypes in primary cultures of rat oligodendrocyte progenitor cells (OPC) and mature OLs, at both mRNA and protein levels. We found that muscarinic receptor expression is developmentally regulated. M1, M3, and M4 receptors were the main subtypes expressed in OPC, whereas all receptor subtypes were expressed at low levels in mature OLs. Exposure of OPC to muscarine enhanced cell proliferation, an effect mainly due to M1, M3, and M4 receptor subtypes as demonstrated by pharmacological competition with selective antagonists. Conversely, M2 receptor activation impaired OPC survival. In line with the mitogenic activity, muscarinic receptor activation increased the expression of platelet derived growth factor receptor α. Muscarine stimulation increased CX32 and myelin basic protein expression, left unaffected that of myelin proteolipid protein (PLP), and decreased member of the family of epidermal growth factor receptor (EGFR) ErbB3/ErbB4 receptor expression indicating a predominant role of muscarinic receptors in OPC. These findings suggest that ACh may contribute to the maintenance of an immature proliferating progenitor pool and impair the progression toward mature stage. This hypothesis is further supported by increased expression of Notch-1 in OL on muscarinic activation.
There is a growing interest on the role of autophagy in diabetes pathophysiology, where development of neuropathy is one of the most frequent comorbidities. We have previously demonstrated that neuropathic pain after nerve damage is exacerbated in autophagy-defective heterozygous Ambra1 mice. Here, we show the existence of a prediabetic state in Ambra1 mice, characterized by hyperglycemia, intolerance to glucose and insulin resistance. Thus, we further investigate the hypothesis that prediabetes may account for the exacerbation of allodynia and chronic pain and that counteracting the autophagy deficit may relieve the neuropathic condition. We took advantage from caloric restriction (CR) able to exert a double action: a powerful increase of autophagy and a control on the metabolic status. We found that CR ameliorates neuropathy throughout anti-inflammatory and metabolic mechanisms both in Ambra1 and in WT animals subjected to nerve injury. Moreover, we discovered that nerve lesion represents, per se, a metabolic stressor and CR reinstates glucose homeostasis, insulin resistance, incomplete fatty acid oxidation and energy metabolism. As autophagy inducer, CR promotes and anticipates Schwann cell autophagy via AMP-activated protein kinase (AMPK) that facilitates remyelination in peripheral nerve. In summary, we provide new evidence for the role of autophagy in glucose metabolism and identify in energy depletion by dietary restriction a therapeutic approach in the fight against neuropathic pain.
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh) is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS) patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF) and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND). We observed higher levels of pro-inflammatory cytokines such as IL-1β and IL-17 in both CSF and serum of RR-MS patients compared to control subjects. Moreover, ACh levels were lower in CSF and serum of RR-MS patients compared to levels of control subjects. Although the relationship between high inflammatory cytokine levels and low ACh levels need to be further investigated in the future, our data suggest that IL-1β, and cytokines induced by it, such as IL-17 and ACh, may be involved in the pathogenesis of MS.
Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.