With the aim to design addressable magnetically-active carbon nanotubes (CNTs) for cancer treatment, the use of Fe-fi lled CNTs (Fe@MWCNTs) as multifunctional scaffolds is reported for exohedrally anchoring a monoclonal antibody (mAb) known to bind a plasma membrane receptor over-expressed in several cancer cells (EGFR). Comprehensive microscopic (transmission electron microscopy, atomic force microscopy, and scanning electron microscopy) and spectroscopic (Raman, 57 Fe Mossbauer, energy dispersive spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction) characterizations reveal the effi cient confi nement of magnetically-active Fe phases ( α -Fe and Fe 3 C), while compositional evaluations through XPS, thermogravimetric analysis and gel electrophoresis confi rm that mAb immobilization onto Fe@MWCNTs occurs. Enzyme-linked immunosorbent assay (ELISA), confocal microscopy imaging and western blotting confi rm the targeting action toward EGFR-overexpressing cell lines (EGFR + ). In vitro magnetic fi ltration experiments demonstrate that a selective removal of EGFR + cells from a mixed population of healthy cell linescould be obtained in very short times ( ≈ 10 min). Cytotoxicity evaluations by classic cell staining procedures after application of an electromagnetic radiation inducing magnetic fl uid hyperthermia (MFH), show a selective suppression of the EGFR + cell line. Molecular dynamics and docking simulations of the hybrid mAb/Fe@MWCNTs conjugates nicely show how the presence of the CNT framework does not sterically affect the conformational properties of the two antigen binding regions, further supporting the biochemical fi ndings.
The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters.
The synthesis of O‐doped polyaromatic hydro‐ carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high‐yield ring‐closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C−O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron‐donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third‐order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.