Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.meningococcus B ͉ reverse vaccinology
SummaryNeisseria meningitidis is a human pathogen, which is a major cause of sepsis and meningitis. The bacterium colonizes the upper respiratory tract of approximately 10% of humans where it lives as a commensal. On rare occasions, it crosses the epithelium and reaches the bloodstream causing sepsis. From the bloodstream it translocates the blood-brain barrier, causing meningitis. Although all strains have the potential to cause disease, a subset of them, which belongs to hypervirulent lineages, causes disease more frequently than others. Recently, we described NadA, a novel antigen of N. meningitidis , present in three of the four known hypervirulent lineages. Here we show that NadA is a novel bacterial invasin which, when expressed on the surface of Escherichia coli , promotes adhesion to and invasion into Chang epithelial cells. Deletion of the N-terminal globular domain of recombinant NadA or pronase treatment of human cells abrogated the adhesive phenotype. A hypervirulent strain of N. meningitidis where the nadA gene was inactivated had a reduced ability to adhere to and invade into epithelial cells in vitro . NadA is likely to improve the fitness of N. meningitidis contributing to the increased virulence of strains that belong to the hypervirulent lineages.
The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity. Our goal was to generate a single antigen that would induce immunity against all known sequence variants of N. meningitidis. To achieve this, we rationally designed, expressed, and purified 54 different mutants of fHBP and tested them in mice for the induction of protective immunity. We identified and determined the crystal structure of a lead chimeric antigen that was able to induce high levels of cross-protective antibodies in mice against all variant strains tested. The new fHBP antigen had a conserved backbone that carried an engineered surface containing specificities for all three variant groups. We demonstrate that the structure-based design of multiple immunodominant antigenic surfaces on a single protein scaffold is possible and represents an effective way to create broadly protective vaccines.
GNA 1870 is a novel surface-exposed lipoprotein, identified by genome analysis of Neisseria meningitidis strain MC58, which induces bactericidal antibodies. Three sequence variants of the protein were shown to be sufficient to induce bactericidal antibodies against a panel of strains representative of the diversity of serogroup B meningococci. Here, we studied the antigenic and immunogenic properties of GNA 1870, which for convenience was divided into domains A, B, and C. The immune responses of mice immunized with each of the three variants were tested using overlapping peptides scanning the entire protein length and using recombinant fragments. We found that while most of the linear epitopes are located in the A domain, the bactericidal antibodies are directed against conformational epitopes located in the BC domain. This was also confirmed by the isolation of a bactericidal murine monoclonal antibody, which failed to recognize linear peptides on the A, B, and C domains separately but recognized a conformational epitope formed only by the combination of the B and C domains. Arginine in position 204 was identified as important for binding of the monoclonal antibody. The identification of the region containing bactericidal epitopes is an important step in the design of new vaccines against meningococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.