Screening drugs on patient biopsies from solid tumours has immense potential, but is challenging due to the small amount of available material. To address this, we present here a plug-based microfluidics platform for functional screening of drug combinations. Integrated Braille valves allow changing the plug composition on demand and enable collecting >1200 data points (56 different conditions with at least 20 replicates each) per biopsy. After deriving and validating efficient and specific drug combinations for two genetically different pancreatic cancer cell lines and xenograft mouse models, we additionally screen live cells from human solid tumours with no need for ex vivo culturing steps, and obtain highly specific sensitivity profiles. The entire workflow can be completed within 48 h at assay costs of less than US$ 150 per patient. We believe this can pave the way for rapid determination of optimal personalized cancer therapies.
Genomic features are used as biomarkers of sensitivity to kinase inhibitors used widely to treat human cancer, but effective patient stratification based on these principles remains limited in impact. Insofar as kinase inhibitors interfere with signaling dynamics, and, in turn, signaling dynamics affects inhibitor responses, we investigated associations in this study between cell-specific dynamic signaling pathways and drug sensitivity. Specifically, we measured 14 phosphoproteins under 43 different perturbed conditions (combinations of 5 stimuli and 7 inhibitors) in 14 colorectal cancer cell lines, building cell line-specific dynamic logic models of underlying signaling networks. Model parameters representing pathway dynamics were used as features to predict sensitivity to a panel of 27 drugs. Specific parameters of signaling dynamics correlated strongly with drug sensitivity for 14 of the drugs, 9 of which had no genomic biomarker. Following one of these associations, we validated a drug combination predicted to overcome resistance to MEK inhibitors by co-blockade of GSK3, which was not found based on associations with genomic data. These results suggest that, in order to better understand cancer resistance and move toward personalized medicine, it is essential to consider signaling network dynamics that can not be inferred from static genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.