1 Acetylcholine release at the neuromuscular junction relies on rapid, local and transient calcium increase at presynaptic active zones, triggered by the ion in¯ux through voltage-dependent calcium channels (VDCCs) clustered on the presynaptic membrane. Pharmacological investigation of the role of di erent VDCC subtypes (L-, N-, P/Q-and R-type) in spontaneous and evoked acetylcholine (ACh) release was carried out in adult mouse neuromuscular junctions (NMJs) under normal and pathological conditions. 2 o-Agatoxin IVA (500 nM), a speci®c P/Q-type VDCC blocker, abolished end plate potentials (EPPs) in normal NMJs. However, when neurotransmitter release was potentiated by the presence of the K + channel blocker 4-aminopyridine (4-AP), an o-agatoxin IVA-and o-conotoxin MVIICresistant component was detected. This resistant component was only partially sensitive to 1 mM oconotoxin GVIA (N-type VDCC blocker), but insensitive to any other known VDCC blockers. Spontaneous release was dependent only on P/Q-type VDCC in normal NMJs. However, in the presence of 4-AP, it relied on L-type VDCCs too. 3 ACh release from normal NMJs was compared with that of NMJs of mice passively injected with IgGs obtained from patients with Lambert-Eaton myasthenic syndrome (LEMS), a disorder characterized by a compromised neurotransmitter release. Di erently from normal NMJs, in LEMS IgGs-treated NMJs an o-agatoxin IVA-resistant EPP component was detected, which was only partially blocked by calciseptine (1 mM), a speci®c L-type VDCC blocker. 4 Altogether, these data demonstrate that multiple VDCC subtypes are present at the mouse NMJ and that a resistant component can be identi®ed under`pharmacological' and/or`pathological' conditions.
Voltage-operated calcium channels play crucial roles in stimulus-secretion coupling in pancreatic beta cells. A growing body of evidence indicates that these channels in beta cells are heterogeneous. In particular, not all the high-threshold calcium channels expressed belong to the best known L-type. In rat insulinoma cells, for example, L, N, and P/Q-type channels are present, while in human beta cells L-type and P/Q-type dominate. Where present, N-type and P/Q-type channels participate, alongside with the dominant L-type, in the control of sugar- or depolarization-induced hormone release. Distinct biophysical properties and selective modulation of the channel subtypes are likely to play important physiological roles. T-type channels are involved in beta cell apoptosis, while calcium channel autoantibodies recognizing high-threshold channels in beta cells, have been described both in neurological and diabetic patients. Subtype-selective calcium channel drugs have the potential for being beneficial in beta cell pathological states.
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder of neuromuscular transmission in which antibodies are directed against voltage-gated calcium channels (VGCCs). We studied the action of LEMS immunoglobulin G (IgG) on cloned human VGCCs stably transfected into human embryonic kidney cells (HEK293). All LEMS IgGs tested bound to the surface of the P/Q-type VGCC cell line and caused a significant reduction in whole-cell calcium currents in these cells. By contrast, only 2 out of 6 IgGs bound extracellularly to the N-type VGCC cell line, and none of the LEMS IgGs tested was able to reduce whole-cell calcium currents in these cells. We used this apparent specificity of LEMS IgG for the P/Q-type VGCC to investigate the action of these IgGs on model systems where a number of different VGCC populations exist in equilibrium. LEMS IgG caused a significant downregulation in the omega-agatoxin IVA-sensitive P/Q-type VGCCs of cultured rat cerebellar neurons, but this was accompanied by a concomitant rise in the "resistant" R-type VGCCs. By using the passive transfer model of LEMS, similar results were observed at the mouse neuromuscular junction, where a significant reduction in P/Q-type VGCCs was paralleled by an increase in L- and R-type VGCCs. These results demonstrate an unexpected plasticity in the expression of VGCCs in mammalian neurons and may represent a mechanism by which the pathogenic effects of LEMS IgG are reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.