This study evaluated the effects of dietary insect meal from Hermetia illucens larvae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Three diets, with increasing levels of insect meal inclusion (10%, 20%, and 30%) and a control diet without insect meal were tested in a 12-week feeding trial. To analyze the resident intestinal microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. The number of reads taxonomically classified according to the Greengenes database was 1,514,155. Seventy-four Operational Taxonomic Units (OTUs) at 97% identity were identified. The core of adhered intestinal microbiota, i.e., OTUs present in at least 80% of mucosal samples and shared regardless of the diet, was constituted by three OTUs assigned to Propiobacterinae, Shewanella, and Mycoplasma genera, respectively. Fish fed the insect-based diets showed higher bacterial diversity with a reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion in the diet increased the gut abundance of Mycoplasma, which was attributed the ability to produce lactic and acetic acid as final products of its fermentation. We believe that the observed variations on the autochthonous intestinal microbiota composition of trout are principally due to the prebiotic properties of fermentable chitin.
Background This study evaluated the effects of partial substitution of dietary fishmeal (FM) with either fish protein hydrolysate (FPH) or autolysed dried yeast (HiCell®, Biorigin, Brazil) on intestinal microbiota of gilthead sea bream (Sparus aurata). A total number of 720 fish of 122.18 ± 6.22 g were fed for 92 days with three different diets in triplicate (3 tanks/diet). A diet based on FM/vegetable meal was used as control. The other two diets were formulated by replacing FM with 5% of either FPH or HiCell®. To analyze the gut microbiota associated to autochthonous and allochthonous microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. Results A total number of 102 OTUs (operational taxonomic units) at 97% identity were identified in fish gut samples collected at the end of feeding trial. Fourteen OTUs constituted the core gut microbiota, i.e. those OTUs found in at least nine out of fifteen samples per group and shared regardless of the diet. Eight OTUs were assigned to Firmicutes represented by Lactobacillus, Staphylococcus, and Bacillus genera, and six to Proteobacteria phylum. Dietary dried yeast autolysate modulated the intestinal microbiota by promoting the growth of some beneficial bacteria. At order level, fish fed yeast showed an enrichment in Bacillales and Clostridiales as compared to the control group, whereas fish fed FPH showed a significantly lower amount of bacteria belonging to Alteromonadales and Enterobacteriales than the other two feeding groups. Although we did not observe any effect of 5% FM replacement with alternative nitrogen sources at phylum level, at lower taxonomical levels, the composition of gut microbiota, in terms of relative abundance of specific taxa, was significantly influenced by the dietary treatment. Conclusions The metabarcoding analysis revealed a clearly intestinal microbiota modulation in response to dietary autolyzed yeast. The abundance of some beneficial bacteria, i.e. indigestible carbohydrate degrading- and SCFA producing bacteria, was positively affected. Brewer’s yeast autolysate could be a valid alternative protein source to FM as well as a valid functional ingredient for aquafeed production.
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13-36 dph and was challenged with PP-based diet during 36-66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3-13 dph followed by FM diet during 13-36 dph and PP diet during 36-66 dph; 3) The T-NP group received NP between 13-23 dph through PP diet followed by FM diet during 23-36 dph and PP diet during 36-66 dph; and 4) The PP group received PP diet from 13-66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining-possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Background In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). Methods A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ± 0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. Results and Conclusions The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.
33Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant 34 protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later 35 life stages. This study explored the effect of NP and its induction time on growth, expression of 36 appetite-stimulating hormones, and any morphological changes in the gut possibly responsible 37 for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 38 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group 39 received fishmeal (FM)-based diet from 13-36 dph and was challenged with PP-based diet 40 during 36-66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food 41 enrichment during 3-13 dph followed by FM diet during 13-36 dph and PP diet during 36-66 42 dph; 3) The T-NP group received NP between 13-23 dph through PP diet followed by FM diet 43 during 23-36 dph and PP diet during 36-66 dph; and 4) The PP group received PP diet from 13-44 66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to 45 control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and 46 NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin 47 expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower 48 in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus 49 length to width ratio in the middle intestine was found in T-NP compared to all other groups. The 50 study suggests that NP induced during juveniles stages improves zebrafish growth and affects 51 digestive hormone regulation and morphology of the intestinal lining -possible mechanisms 52 behind the improved PP utilization in pre-adult zebrafish stages. 53 54 56Replacement of fishmeal (FM) in fish diets with plant protein (PP) has been an ongoing 57 challenge in the aquaculture industry. High-quality PP sources such as soy or pea protein 58 concentrates and wheat or corn gluten have been widely used by the feed industry since their 59 digestibility in some species is comparable to FM. However, their price can often exceed the cost 60 of marine raw materials. Although some progress with utilization of lower-quality PP, such as 61 soybean meal, has been made, a number of concerns must still be overcome including low 62 palatability, imbalanced amino acid profile, and a presence of anti-nutritional factors responsible 63 for inducing intestinal inflammation, to maintain acceptable growth rates and feed efficiency 64 values at high FM substitution levels. Thus, the aquafeed industry has focused on ways to 65 include some of the more cost-effective alternative sources of protein that will not only help to 66 further replace FM but also substitute some of the expensive high-quality PP concentrates and 67 provide more flexibility in feed formulations using a wider range of available raw materials. 68Nutritional progra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.