RNAi pathways have evolved as important modulators of gene expression that act in the cytoplasm by degrading RNA target molecules via the activity of short (21-30nt) RNAs1-6 RNAi components have been reported to play a role in the nucleus as they are involved in epigenetic regulation and heterochromatin formation7-10. However, although RNAi-mediated post-transcriptional silencing (PTGS) is well documented, mechanisms of RNAi-mediated transcriptional gene silencing (TGS) and in particular the role of RNAi components in chromatin, especially in higher eukaryotes, are still elusive. Here we show that key RNAi components Dicer-2 (Dcr2) and and Argonaute-2 (AGO2) AGO2 associate with chromatin, with strong preference for euchromatic, transcriptionally active loci and interact with core transcription machinery. Notably Dcr2 and AGO2 loss of function show that transcriptional defects are accompanied by perturbation of Pol II positioning on promoters. Further, both Dcr2 and Ago2 null mutations as well as missense mutations compromising the RNAi activity impair global Pol II dynamics upon heat shock. Finally, AGO2 RIP-seq experiments reveal that, AGO2 is strongly enriched in small-RNAs encompassing promoter as well as other parts of heat shock and other gene loci on both sense and antisense, with a strong bias for antisense, particularly after heat shock. Taken together our results reveal a new scenario in which Dcr2 and AGO2 are globally associated with transcriptionally active loci and may play a pivotal role in shaping the transcriptome by controlling RNA Pol II processivity.
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Polycomb group (PcG) proteins are part of a conserved cell memory system that conveys epigenetic inheritance of silenced transcriptional states through cell division. Despite the considerable amount of information about PcG mechanisms controlling gene silencing, how PcG proteins maintain repressive chromatin during epigenome duplication is still unclear. Here we identified a specific time window, the early S phase, in which PcG proteins are recruited at BX-C PRE target sites in concomitance with H3K27me3 repressive mark deposition. Notably, these events precede and are uncoupled from PRE replication timing, which occurs in late S phase when most epigenetic signatures are reduced. These findings shed light on one of the key mechanisms for PcG–mediated epigenetic inheritance during S phase, suggesting a conserved model in which the PcG–dependent H3K27me3 mark is inherited by dilution and not by de novo methylation occurring at the time of replication.
Lung cancer is the first cause of cancer death worldwide and the Hippo pathway transcriptional coactivators YAP/TAZ have a pro-oncogenic role in this context. In order to understand the mechanisms through which YAP/TAZ elicit their oncogenic role in different systems, many studies are focused on YAP/TAZ target genes involved in the regulation of cell proliferation/survival and migration. However, there is scarce evidence on the role of YAP/TAZ in microRNA regulation while there is increasing evidence supporting the role of microRNAs in the main oncogenic processes. Here, we showed that YAP/TAZ were able to regulate several microRNAs in non-small cell lung cancer (NSCLC) cell lines. In detail, we focused on a cluster of three oncogenic microRNAs (miR-25, 93 and 106b) hosted in the MCM7 gene that were overexpressed in lung tumors compared to normal tissues. In addition, similar behavior was observed in breast cancer and head and neck tumor casuistries, where they showed a prognostic role. In NSCLC cells, YAP/TAZ induced the transcription of the MCM7 gene and its hosted miRs, thereby promoting cell proliferation through the post-transcriptional inhibition of the p21 cell cycle regulator. Accordingly, p21 was maintained at low levels in lung tumors compared to normal tissues. Conversely, its expression was restored in NSCLC cells upon YAP/TAZ interference or upon treatment with the statin cerivastatin. In summary, we provide evidence for a novel mechanism of modulation supporting the protumorigenic functions of the YAP/TAZ factors through the modulation of a bioncogenic locus consisting of one gene and three hosted microRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.