Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the β-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while β-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.
Solid phase microextraction (polyacrylate fiber), coupled to liquid chromatography with UV-diode array detection, has been optimized for the determination of trans-resveratrol in in wines, spirits, and grape juices. The main aspects influencing fiber adsorption (fiber coating, extraction time, ethanol content, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition, carryover) of the analyte have been investigated. The method permitted a fast and simple determination of free trans-resveratrol in commercial wines and spirits. It was found in all the analysed samples at concentration levels ranging from 0.007 to 4.486 µg mL -1 . Total transresveratrol concentrations were also evaluated after enzymatic deconjugation of piceid.
A new analytical method, based on liquid chromatography (LC) with UV-diode array detection, for the simultaneous determination of daidzein, genistein, and glycitein and their 7-O--D-glucopyranoside (daidzin, genistin, and glycitin, resp.) has been successfully developed. All the calibration curves showed good linearity within the concentration range 0.02-2 g/ml. The limits of detection and quantitation were 0.057 (genistin and glycitein), 0.124 g/ml (genistein), 0.190 g/ml (genistin and glycitein), and 0.410 g/ml (genistein), respectively. Within-day and between-days precision were found not to be significantly different according to an Ftest; values (% RSD) ranged from 2.0 to 2.9%. Extraction and clean-up of soybean flour samples were carried out using matrix solid-phase dispersion extraction (MSPD). The main parameters affecting extraction yield, such as dispersant, type and amount of additives, cosorbent, and extractive solvent, were evaluated and optimized. The average recovery values were between 85.7 and 102.6%. The target isoflavone concentration levels estimated in this work fit existing literature data and were comprised between 39.3 and 345.3 g/g. The whole procedure has proved to be simple, accurate, precise, and cheap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.